欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-3800热模拟实验机对F35MnVN非调质钢在温度范围为950~1200℃,应变速率范围为0.01~5s“进行等温、等应变速率压缩变形,依据所获得的流动应力曲线,拟合获得中间参数表达式,分别获得动态回复-动态再结晶型和Arrhenius方程型两种本构模型,分别统计计算两种模型的预测值与实验值之间的相关系数和相对误差,表明Arrhenius方程型本构模型具有更高的精度,且该模型形式简单,更适合用于F35MnVN钢热锻造过程的数值模拟。

Isothermal hot compression tests of F35MnVN steel were performed on a Gleeble-3800 thermo-me- chanical simulator in the temperature of 950 ~1200 ℃ and the strain rate range of 0.1 ~ 10 s-1 to obatin the flow stress curves. Dynamic recorvery and dynamic recrystallizationtype and Arrheniustype constitutive models were established respectively. Standrad statistical parameters such as as correlation coefficient and avergae absolute relative error were employed to quantify the predictability of the two models. The calculation results indicate the Arrheniustype constitutive model has high accuracy and suits to be used in hot foring simulation for F35MnVN steel.

参考文献

[1] Y.C. Lin;Xiao-Min Chen .A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & design,2011(4):1733-1759.
[2] Ji, G.;Li, F.;Li, Q.;Li, H.;Li, Z. .A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(13/14):4774-4782.
[3] Lin YC;Chen MS;Zhong J .Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J].Computational Materials Science,2008(3):470-477.
[4] Pu ZJ.;Zou D.;Wu KH. .DEVELOPMENT OF CONSTITUTIVE RELATIONSHIPS FOR THE HOT DEFORMATION OF BORON MICROALLOYING TIAL-CR-V ALLOYS[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(0):780-787.
[5] Dipti Samantaray .Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo(P91) steel[J].Materials & design,2010(2):981-984.
[6] Xiao, Y.-H.;Guo, C.;Guo, X.-Y. .Constitutive modeling of hot deformation behavior of H62 brass[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(21):6510-6518.
[7] Mandal, S;Rakesh, V;Sivaprasad, PV;Venugopal, S;Kasiviswanathan, KV .Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2009(1/2):114-121.
[8] Praveen Pauskar;Rajiv Shivpuri .Microstructure and mechanics interaction in the modeling of hot rolling of rods[J].CIRP Annals,1999(1):191-194.
[9] 常开地,王萍,刘卫萍.非调质钢的发展现状和应用进展[J].金属热处理,2011(03):80-85.
[10] 缪桃生,蒋鹏.非调质钢在汽车曲轴、连杆锻件上的应用研究[J].锻压技术,2010(06):1-5.
[11] S. B. Davenport;N. J. Silk;C. N. Sparks;C. M. Sellars .Development of constitutive equations for modelling of hot rolling[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2000(5):539-546.
[12] Siamak Serajzadeh .A mathematical model for evolution of flow stress during hot deformation[J].Materials Letters,2005(26):3319-3324.
[13] Lin YC;Chen MS;Zhong J .Prediction of 42CrMo steel flow stress at high temperature and strain rate[J].Mechanics research communications,2008(3):142-150.
[14] U.S. Dixit;S.N. Joshi;J.P. Davim .Incorporation of material behavior in modeling of metal forming and machining processes: A review[J].Materials & design,2011(7):3655-3670.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%