欢迎登录材料期刊网

材料期刊网

高级检索

高纯Sn和S粉按1∶0.41(质量分数,%)配比,均匀掺入9(质量分数,%)的高纯Zn粉,单源共蒸发沉积薄膜后再进行热处理,得到Sn2S3∶Zn薄膜。XRD分析显示,380℃,55min热处理得到简单正交晶系的纯Sn2S3薄膜。掺Zn(9(质量分数,%))的薄膜经370℃热处理15min得到的薄膜仍属简单正交晶系。掺Zn后Sn2S3薄膜的表面均匀和致密性变好,平均晶粒尺寸从未掺Zn时的35.69nm增加到58.80nm。Sn2S3薄膜的导电类型均为N型,掺Zn后薄膜的电阻率为6.05×101(Ω·cm),比未掺杂时降低1个数量级。Sn2S3薄膜的直接光学带隙为1.85eV,本征吸收边为551nm;Sn2S3∶Zn(9%,质量分数)薄膜的光学带隙1.41eV,本征吸收边873nm发生红移,Sn2S3薄膜的光吸收系数均达到105cm-1。

Pure Sn and S power were mixed with ratio of m (Sn) : m (S) =1 : 0. 41(wt%). Then 9wt% Zn power was added and single source co-evaporation was utilized to prepare Sn2S3 : Zn thin films. The XRD results showed that after 55rain heat-treatment, undoped Sn2S3 films, with simple orthorhombic polycrystalline, was obtained. Films, with Zn (9wt%) doped, still showed simple orthorhombic polycrystalline after 15min heattreatment. The doping increased the surface uniformity and compactness, Average grain size increased from 35.69nm (undoped) to 58. 8Ohm (doped). Doped films showed N type behavior. The resistance rate of Zn (9wtY00) doped films decreased 1 magnitude order, which was 6.05 × 10 (Ω·cm). Direct optical band gap of Sn2S3 film was 1.85eV. The absorption edge was 551nm; after doping Zn (gwt%), the band gap narrowed to 1.41eV. The absorption edge was 873nm and showed red shift. The absorption coefficient was 10Scm-1.

参考文献

[1] Kneip R;Mootz D;Severin U et al.Structure of Tin(Ⅱ)Tin(Ⅳ)trisulphide a redetermination[J].Actacrystallogr Sect B,1982,32:2022-2023.
[2] Salah HB;Bouzouita H;Rezig B .Preparation and characterization of tin sulphide thin films by a spray pyrolysis technique[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2005(0):439-442.
[3] Lopez S;Granados S;Ortiz A .Spray pyrolysis depOvsi-tion of Sn2S3 thin films[J].Semicond Sci TechnoU,1996,11(03):433-436.
[4] Ogah O E;Zoppi G;Forbes I.Properties of thinfilms of tin sulphide produced using the thermal evapora-tion method[A].Valencia,Spain,2008:1-5.
[5] Jiang T.;Ozin GA. .New directions in tin sulfide materials chemistry[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,1998(5):1099-1108.
[6] Mootz D;Puhl H .Die kristallstruktur von Sn2 S3[J].Ac-ta Crystallographica,1967,23:471-476.
[7] Yu KM.;Walukiewicz W.;Wu J.;Shan W.;Beeman JW.;Scarpulla MA.;Dubon OD.;Becla P. .Diluted II-VI oxide semiconductors with multiple band gaps - art. no. 246403[J].Physical review letters,2003(24):6403-0.
[8] Balaz P;Ohtani T;Bastl Z et al.Properties and reactivi-ty of mechanochemically synthesized tin sulfides[J].Sol-id State Chemistry,1999,144:1-7.
[9] Price I S;Parkin I P;Hardy A M E et al.Atmosphericpressure chemical vapor deposition of tin sulfides(SnS,Sn2S3,and SnS2)on glass[J].Chemistry of Materials,1999,11:1792-1799.
[10] Cruz M.;Morales J.;Espinos JP.;Sanz J. .XRD, XPS and Sn-119 NMR study of tin sulfides obtained by using chemical vapor transport methods[J].International Journal of Quantum Chemistry,2003(2):359-365.
[11] 卢建丽,李健,白海平,杨晶.Sn2S3薄膜制备及结构与光学特性[J].真空科学与技术学报,2009(02):130-134.
[12] 柴燕华,李健,卢建丽.Sb掺杂Sn2S3薄膜的表征及电学特性[J].真空科学与技术学报,2011(01):89-94.
[13] Wang Yan;Li Jian;Lu Jianli .Preparation and opticscharacterization of the Sb-doped S112S3 thin films[J].Journal of Functional Materials,2011,42(z2):320-324.
[14] 彭跃华,周海青,刘湘衡,何熊武,赵丁,海阔,周伟昌,袁华军,唐东升.化学气相沉积法制备Sn2S3一维纳米结构阵列[J].物理化学学报,2011(05):1249-1253.
[15] Senda T;Richard C .Bradt grain growth in sintered ZnOand ZnO- Bi2 O3 ceramics[J].Journal of the AmericanCeramic Society,1990,73(01):106-114.
[16] A Sanchez-Juarez;A Ortiz .Effects of precursor concentration on the optical and electrical properties of Sn_xS_y thin films prepared by plasma-enhanced chemical vapour deposition[J].Semiconductor Science and Technology,2002(9):931-937.
[17] Tauc G J R;Ancu A V .Optical properties and electron-ic structure of amorphous germanium[J].Phys Stat Sol-id,1966,15(02):62.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%