稀有金属材料与工程, 2009, 38(z2): 427-430.
高温处理对不同浆料制备C/SiC复合材料的影响
张守明 1, , 王松 2, , 陈朝辉 气氛环境中使用溶液浇铸的方法在固体基板上制得具有蜂窝状孔结构的聚合物膜.发现不同组成比的LA-GA共聚物的亲水性对形成蜂窝状结构具有关键的影响,同时这种蜂窝状结构可以通过改变成膜条件加以有效控制.","authors":[{"authorName":"赵晓勇","id":"b9fe978c-3205-4d0b-ba6b-eea784d66d14","originalAuthorName":"赵晓勇"},{"authorName":"蔡晴","id":"de74266d-9dca-46e4-98cc-d7d2be45517c","originalAuthorName":"蔡晴"},{"authorName":"石桂欣","id":"6369dd7e-b290-4f8e-86d0-6f6ecdfcbb30","originalAuthorName":"石桂欣"},{"authorName":"施艳荞","id":"a10cbdd8-2874-4d3c-ab3b-038dc7670edb","originalAuthorName":"施艳荞"},{"authorName":"陈观文","id":"b1e6dcce-25e7-4372-8d5f-533d815dd8d6","originalAuthorName":"陈观文"}],"doi":"10.3969/j.issn.1007-8924.2004.02.001","fpage":"1","id":"36b2ff78-7dd1-4139-b19f-58d0ec91509c","issue":"2","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"1d32800b-c125-4094-91fb-f68dff4b0ef2","keyword":"水蒸气气氛","originalKeyword":"水蒸气气氛"},{"id":"eccdd48b-ed90-4fc6-b95e-810ba1216aee","keyword":"多孔薄膜","originalKeyword":"多孔薄膜"},{"id":"e9c686d6-2a7f-433f-bd09-8dcc2f939a73","keyword":"蜂窝状结构","originalKeyword":"蜂窝状结构"},{"id":"42c8355e-f2a9-4ad6-a14b-7ba548361194","keyword":"D,L-丙交酯-乙交酯共聚物","originalKeyword":"D,L-丙交酯-乙交酯共聚物"}],"language":"zh","publisherId":"mkxyjs200402001","title":"水蒸气辅助法制备LA-GA共聚物蜂窝状多孔膜","volume":"24","year":"2004"},{"abstractinfo":"针对目前工业上难处理的高砷铜阳极泥,作者提出在水蒸气气氛中焙烧脱砷的新工艺.实验主要对反应气氛、焙烧温度、焙烧时间等影响因素进行了系统考查.结果表明,在水蒸气气氛下焙烧高砷铅阳极泥,脱砷率≥87%,焙砂含砷<3%,脱砷效果明显好于空气气氛.同时,通过XRD分析,对焙烧脱砷过程中的物相变化及反应机理进行了探讨.","authors":[{"authorName":"吴俊升","id":"da470e8b-dba1-42dd-a2a2-91fe32c22b18","originalAuthorName":"吴俊升"},{"authorName":"陆跃华","id":"dc5fa85e-239c-448d-a479-caf120d3ae14","originalAuthorName":"陆跃华"},{"authorName":"周杨霁","id":"2807b527-7cac-4eb2-bf16-1926010c7218","originalAuthorName":"周杨霁"},{"authorName":"吴立生","id":"b9164c4b-0f34-4b3a-981a-9e914781c48c","originalAuthorName":"吴立生"},{"authorName":"李晓刚","id":"d5ba872a-926d-489e-ad92-c97bb44d768a","originalAuthorName":"李晓刚"}],"doi":"10.3969/j.issn.1004-0676.2003.04.005","fpage":"26","id":"a80fef35-22c4-46f1-9c28-69959a60d1c8","issue":"4","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"4198016a-d625-446a-ab8c-5ce1d85e7073","keyword":"提炼冶金","originalKeyword":"提炼冶金"},{"id":"7ccbca82-8f0e-4d95-bfbd-1670ed7e7fcb","keyword":"高砷铅阳极泥","originalKeyword":"高砷铅阳极泥"},{"id":"ccb858d5-e916-4a2b-8327-fc005fb7a57f","keyword":"水蒸气焙烧","originalKeyword":"水蒸气焙烧"},{"id":"9611df1f-bd59-43c9-97f3-3618c335f3e3","keyword":"脱砷","originalKeyword":"脱砷"}],"language":"zh","publisherId":"gjs200304005","title":"高砷铅阳极泥水蒸气焙烧脱砷实验研究","volume":"24","year":"2003"},{"abstractinfo":"以三氯甲基硅烷(MTS)为原料,在无水蒸气和有水蒸气加入的条件下采用化学气相沉积(CVD)法制备出SiC块体材料.在950~1200 ℃的范围内,水蒸气在水温20~80℃时由Ar鼓泡引入反应器中进行沉积,得到的产物基本属β-SiC,其中混有少量的二氧化硅.结果表明,无水蒸气时SiC的沉积速率随沉积温度升高而略有升高;通入水蒸气后SiC的沉积速率有所提高,当水蒸气的引入温度为20℃、沉积温度为1050℃时,沉积速率最大达到0.9mm/h;随水蒸气引入量的增加,SiC的沉积速率呈降低趋势.对沉积反应的机理进行了初步分析.","authors":[{"authorName":"焦桓","id":"05aed781-8764-48ab-bd51-26b1d1f0e5d4","originalAuthorName":"焦桓"},{"authorName":"周万城","id":"dd574d0a-8ab3-4e67-b63d-8290e62c4a7b","originalAuthorName":"周万城"},{"authorName":"李翔","id":"dadb5cbb-3ba9-4935-bb08-c1aa65274f69","originalAuthorName":"李翔"}],"doi":"10.3969/j.issn.1001-4381.2000.12.004","fpage":"12","id":"1786543a-9856-485a-b00a-bfc032c2fd90","issue":"12","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"c16d0a84-e4cd-4d0b-9a35-8e28fe2265dc","keyword":"CVD","originalKeyword":"CVD"},{"id":"a815fa9c-0f97-4ec5-8dfe-587765b9d430","keyword":"SiC","originalKeyword":"SiC"},{"id":"83a4ac6f-9a0f-41d6-a8e9-77c3b2c78bf8","keyword":"水蒸气","originalKeyword":"水蒸气"},{"id":"23c77dc2-3d92-4412-8eea-927d235030d7","keyword":"机理","originalKeyword":"机理"}],"language":"zh","publisherId":"clgc200012004","title":"CVD法水蒸气条件下制备SiC块体","volume":"","year":"2000"},{"abstractinfo":"研究了Fe15Cr和Fe20Cr合金在900~1000℃含水蒸气的氧气中的氧化行为在氧化初期,由于形成富铬的保护性氧化膜,FeCr表现为较慢的钝性氧化行为但随之形成富铁氧化层,因而表现为快速的活性氧化行为这种转变对气氛中的水蒸气含量、温度以及铬含量都非常敏感水蒸气含量越高,出现活性氧化的时间越早;在湿氧中温度升高或减少铬含量也有利于活性氧化的出现用金相、X-射线衍射、SEM和EPMA观察分析了氧化产物提出了水蒸气加速Fe-Cr合金高温氧化的作用机制","authors":[{"authorName":"沈嘉年","id":"2195a466-251e-4fa8-98f0-618ffef81550","originalAuthorName":"沈嘉年"},{"authorName":"周龙江","id":"970cd8dc-e165-407e-af58-bcaf8f118ff0","originalAuthorName":"周龙江"},{"authorName":"李铁藩","id":"9c97b51c-7591-4d70-9a51-af8d1f6ee435","originalAuthorName":"李铁藩"}],"categoryName":"|","doi":"","fpage":"128","id":"49fd6251-be4b-44c4-98a8-d4eed496c251","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"97d40955-e6d3-4849-b6eb-a09ed884beaf","keyword":"FeCr合金","originalKeyword":"FeCr合金"},{"id":"adb092ec-3061-428c-9cf2-1d0ff5a5ea6c","keyword":" high temperature oxidation","originalKeyword":" high temperature oxidation"},{"id":"13c2ca8c-4646-4f64-80c2-0773e55a9179","keyword":" water vapor","originalKeyword":" water vapor"}],"language":"zh","publisherId":"1005-3093_1998_2_11","title":"水蒸气加速Fe-Cr合金高温氧化的作用","volume":"12","year":"1998"},{"abstractinfo":"高炉生产过程中,因风口、冷却器操作失误或设备故障等问题漏水现象频发,研究炉缸用耐火材料在水蒸气条件下的抗氧化性能具有很重要的现实意义,通过热重实验结合热力学分析,研究了高炉炉缸用碳复合砖在不同气氛、气体流量、水蒸气含量条件下的氧化行为.结果表明:碳复合砖在水蒸气条件下表现出良好的抗氧化性能;经比较,碳复合砖的抗水蒸气氧化性能远优于炭砖的抗水蒸气氧化性能,在水蒸气条件下能保证高炉的安全生产.","authors":[{"authorName":"刘彦祥","id":"c14871c7-ac4a-44e9-be52-46d80d71b903","originalAuthorName":"刘彦祥"},{"authorName":"刘福军","id":"2a400e7a-b12e-47c8-ae77-f5dd8eb1658e","originalAuthorName":"刘福军"},{"authorName":"张建良","id":"fd97c4a0-7eff-4892-96ec-0270e8011bb4","originalAuthorName":"张建良"},{"authorName":"焦克新","id":"e88d8216-ff07-45b7-b53d-eee45a810a74","originalAuthorName":"焦克新"},{"authorName":"赵永安","id":"c621c6af-0863-44d5-9c73-b0b125350e05","originalAuthorName":"赵永安"}],"doi":"","fpage":"519","id":"5af997f2-56f3-4174-a798-ccbcee606043","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"eef4decc-6447-46d6-9356-f72f54d6153c","keyword":"高炉炉缸","originalKeyword":"高炉炉缸"},{"id":"247646a0-7abc-4aa0-9218-3d38f0a2dd3e","keyword":"耐火材料","originalKeyword":"耐火材料"},{"id":"8d88359f-63d9-4534-aaf0-f65a5e700907","keyword":"碳复合砖","originalKeyword":"碳复合砖"},{"id":"409417a6-4de8-4e62-8d51-9ad40af913c0","keyword":"水蒸气","originalKeyword":"水蒸气"}],"language":"zh","publisherId":"gsytb201702018","title":"高炉炉缸用碳复合砖在水蒸气条件下的氧化行为研究","volume":"36","year":"2017"},{"abstractinfo":"采用溶胶-凝胶法制得三种镥硅酸盐体系粉体材料. 以氧化物的摩尔比来表示此三种粉体, 分别为:Lu2O3·SiO2、Lu2O3·2SiO2和Lu2O3·2.26SiO2. 在1400℃、50%H2O-50%O2静态常压气氛下, 研究了它们的耐水蒸气腐蚀性能.以单位面积重量变化率表征材料的耐水蒸气腐蚀性能, 结合X射线衍射(XRD)、傅里叶红外光谱(FTIR)和扫描电镜能谱分析(SEMEDS)等分析手段, 揭示了镥硅酸盐体系在高温水蒸气环境中的腐蚀机制和反应机理. 结果表明:三种原始粉体主要物相依次为:Lu2SiO5+Lu2Si2O7、 Lu2Si2O7+SiO2和Lu2Si2O7+SiO2. 在水蒸气作用下, Lu2SiO5相与Al2O3反应生成新相Lu3Al5O12, 而Lu2Si2O7相并未受到水蒸气的作用而发生任何反应, 表现出优异的化学稳定性. ","authors":[{"authorName":"洪智亮","id":"675aea92-6a05-47cb-a8c9-d0e1a4a5f3a5","originalAuthorName":"洪智亮"},{"authorName":"成来飞","id":"1bbc808e-d323-4306-8e62-a99bc41dc4e1","originalAuthorName":"成来飞"},{"authorName":"鲁琳静","id":"9279d68b-2e28-41f5-9b8f-a1b494059ac5","originalAuthorName":"鲁琳静"},{"authorName":"张立同","id":"6e06eb44-ae29-406b-84bd-0791e9b03bed","originalAuthorName":"张立同"},{"authorName":"王一光","id":"89ec6db8-7dee-4185-b135-dfcacaa2ab63","originalAuthorName":"王一光"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2010.00186","fpage":"186","id":"66b66177-c9f8-4f7f-a098-df77c4892c5b","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"b1d5a5bd-190a-4f10-8617-3b863789a7bd","keyword":"Lu2SiO5","originalKeyword":"Lu2SiO5"},{"id":"893a87d4-8c00-416a-a25c-4b19250fc11a","keyword":" Lu2Si2O7","originalKeyword":" Lu2Si2O7"},{"id":"d2cae9b5-8825-4569-8452-f27c181c2630","keyword":" environmental barrier coating (EBC)","originalKeyword":" environmental barrier coating (EBC)"},{"id":"dd40d5cf-8c27-4712-aae4-9deeb67b6582","keyword":" water vapor corrosion","originalKeyword":" water vapor corrosion"}],"language":"zh","publisherId":"1000-324X_2010_2_17","title":"Lu-Si-O体系在高温水蒸气环境中的腐蚀行为","volume":"25","year":"2010"},{"abstractinfo":"采用溶胶-凝胶法制得三种镥硅酸盐体系粉体材料.以氧化物的摩尔比来表示此三种粉体,分别为:Lu_2O_3·SiO_2、Lu_2O_3·2SiO_2和Lu_2O_3·2.26SiO_2.在1400℃、50%H_2O-50%O_2静态常压气氛下,研究了它们的耐水蒸气腐蚀性能.以单位面积重量变化率表征材料的耐水蒸气腐蚀性能,结合X射线衍射(XRD)、傅里叶红外光谱(FTIR)和扫描电镜能谱分析(SEM-EDS)等分析手段,揭示了镥硅酸盐体系在高温水蒸气环境中的腐蚀机制和反应机理.结果表明:三种原始粉体主要物相依次为:Lu_2SiO_5+Lu_2Si_2O_7、Lu_2Si_2O_7+SiO_2和Lu_2Si_2o_7+SiO_2.在水蒸气作用下,Lu_2SiO_5相与Al_2O_3反应生成新相Lu_3Al_5O_(12)而Lu_2Si_2O_7相并未受到水蒸气的作用而发生任何反应,表现出优异的化学稳定性.","authors":[{"authorName":"洪智亮","id":"7bd8635f-a0ae-40ac-8631-03f4db4fe18d","originalAuthorName":"洪智亮"},{"authorName":"成来飞","id":"95bf28ba-a520-4d2f-aa83-b34afc405a9d","originalAuthorName":"成来飞"},{"authorName":"鲁琳静","id":"96fe9437-2006-418a-9b55-d3d0437f49d0","originalAuthorName":"鲁琳静"},{"authorName":"张立同","id":"3bda35a7-9086-4ed0-aa3e-b61433f41798","originalAuthorName":"张立同"},{"authorName":"王一光","id":"252a31a7-ff5f-4cc6-b905-4cf04fa68fb3","originalAuthorName":"王一光"}],"doi":"10.3724/SP.J.1077.2010.00186","fpage":"186","id":"2f3332fa-99b0-4b79-b7e1-56c070235b95","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"608a8b74-0ff9-457e-ad79-884d5566beb5","keyword":"Lu_2SiO_5","originalKeyword":"Lu_2SiO_5"},{"id":"8a4bc7f4-f9fd-45b1-854b-b2a6110ca01a","keyword":"Lu_2Si_2O_7","originalKeyword":"Lu_2Si_2O_7"},{"id":"8a368e96-f023-4cda-8605-d15397b56633","keyword":"环境障碍涂层","originalKeyword":"环境障碍涂层"},{"id":"8c699d25-d629-4b5a-89fa-a587be105e83","keyword":"水蒸气腐蚀","originalKeyword":"水蒸气腐蚀"}],"language":"zh","publisherId":"wjclxb201002015","title":"Lu-Si-O体系在高温水蒸气环境中的腐蚀行为","volume":"25","year":"2010"},{"abstractinfo":"研究了高温水蒸气的温度和流量对T91钢氧化行为的影响,阐述了氧化层的组织结构与氧化动力学之间的关系.结果表明:水蒸气氧化过程分为线性的初始快速氧化阶段和之后的抛物线慢速氧化阶段及线性的慢速氧化阶段.当水蒸气温度较高、流量较小时出现慢速氧化阶段.初始快速氧化阶段的氧化速率随水蒸气温度的升高而增大,但水蒸气流量对初始快速氧化阶段的氧化速率影响很小.初始快速氧化阶段单位面积增重最大值随水蒸气流量的增大而线性增大,且随温度升高而增速加快.随着水蒸气温度和流量的增加,T91钢最外层氧化层的形态发生明显改变,导致抗高温氧化性能显著下降.","authors":[{"authorName":"耿波","id":"f7640e66-6a14-42ed-b2e8-8e932ece15f5","originalAuthorName":"耿波"},{"authorName":"张路","id":"dcf60b37-e006-4260-a46b-27f3da8e9ef8","originalAuthorName":"张路"},{"authorName":"范念青","id":"dd3d34ee-dbd1-4f02-a69d-46c1e0938eeb","originalAuthorName":"范念青"},{"authorName":"夏志新","id":"139818fa-346e-4add-9b7b-e26fd8250998","originalAuthorName":"夏志新"},{"authorName":"刘江南","id":"866dd521-91c3-4a0d-bfd2-94035e7add88","originalAuthorName":"刘江南"}],"doi":"10.3969/j.issn.1001-4381.2014.01.010","fpage":"52","id":"6efa3ee6-7da5-4c16-b79c-6d9d2fd58720","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"073fa14c-c2d6-482c-a9ca-bcd5e263f833","keyword":"耐热钢","originalKeyword":"耐热钢"},{"id":"a9efd697-be94-4cd7-9388-1a8e7de726d2","keyword":"水蒸气","originalKeyword":"水蒸气"},{"id":"4880fcfd-e525-4f53-a51e-e670515b32b3","keyword":"氧化行为","originalKeyword":"氧化行为"},{"id":"ac51bc25-cdb4-48fd-a596-c12d8f357509","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"clgc201401010","title":"水蒸气温度和流量对T91钢氧化行为的影响","volume":"","year":"2014"},{"abstractinfo":"目的:研究T92钢在90%Ar+10%H2 O(均为体积分数)气氛中750℃条件下的氧化行为。方法在管式炉中进行高温氧化实验,利用SEM/EDS和XRD分析氧化膜的形貌、结构和成分。结果 T92钢在高温水蒸气环境中,氧化初始阶段的氧化产物为Fe2 O3和FeCr2 O4。随后的氧化过程中,Fe快速向外扩散,氧化加速。最终的氧化膜呈双层结构,内层为Fe2 O3和FeCr2 O4,外层为Fe2 O3,氧化层内存在孔洞,且有裂纹。结论 T92钢在氧化初期不生成保护性富Cr氧化膜,在高温水蒸气环境中的氧化严重。","authors":[{"authorName":"李茂东","id":"6c1d72b3-f015-4c2b-a3d9-89b4321c7710","originalAuthorName":"李茂东"},{"authorName":"倪进飞","id":"669893c3-93cd-4dbd-aa5e-fd52bead3b46","originalAuthorName":"倪进飞"},{"authorName":"王彩福","id":"98370dff-ca62-482b-a592-c51d085ed1c2","originalAuthorName":"王彩福"},{"authorName":"田继红","id":"c4e2f80e-728a-487a-8118-cb7964eca302","originalAuthorName":"田继红"},{"authorName":"刘光明","id":"27a3e2c9-5330-4735-9b5f-cac6a1d5898f","originalAuthorName":"刘光明"}],"doi":"","fpage":"10","id":"d68155b1-0413-4c35-970e-eb68a009ced0","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"272cd307-fbf8-4525-a9d1-273afc844dbd","keyword":"T92钢","originalKeyword":"T92钢"},{"id":"2fbb4880-77bb-4962-b746-7937b05af575","keyword":"水蒸气","originalKeyword":"水蒸气"},{"id":"86a4cea8-8181-4aba-989b-af4988d29512","keyword":"高温氧化","originalKeyword":"高温氧化"}],"language":"zh","publisherId":"bmjs201403003","title":"T92钢在高温水蒸气中的氧化行为","volume":"","year":"2014"},{"abstractinfo":"本文采用实验方法,在一个流化床反应器中研究160~750℃下水蒸气的存在对HCl脱除效率(RE)的影响.实验结果表明:在低温区,水蒸气对RE的影响不明显;380℃时水蒸气的存在抑制反应进行;580℃和750℃时,脱除效率先下降,当水蒸气含量达到15%时,又呈现上升趋势.对于水蒸气含量为5%、10%和15%情况下,580℃的脱氯效率最高.最后通过对暴露的反应物表面积和HCl气体穿越产物层扩散过程的分析解释实验得到的规律.","authors":[{"authorName":"王蕊","id":"3056b17a-b681-4096-8ed2-9e949e91ed28","originalAuthorName":"王蕊"},{"authorName":"聂睿","id":"5efbee9d-8ce4-432f-af32-cf0473b670ef","originalAuthorName":"聂睿"},{"authorName":"邓晶","id":"8698fc8b-e0a4-4c70-80f4-3d42da17c35f","originalAuthorName":"邓晶"},{"authorName":"田君国","id":"9c467cc5-220b-4bab-bf84-fb2c3ee5d0a0","originalAuthorName":"田君国"},{"authorName":"徐永香","id":"6803a566-e13a-4098-bd2b-da4b5054bbcc","originalAuthorName":"徐永香"},{"authorName":"盛宏至","id":"d3b4d394-9cb6-49bc-bba7-c52086ab4b4c","originalAuthorName":"盛宏至"}],"doi":"","fpage":"897","id":"3856e800-f40f-46cb-9fe5-845a7e61fd26","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f4e4d23a-e64a-40d1-bbfc-f366783707ad","keyword":"水蒸气","originalKeyword":"水蒸气"},{"id":"e4fa44b2-85a4-4e87-abf1-32e2defc0503","keyword":"氧化钙","originalKeyword":"氧化钙"},{"id":"41cf240e-ab38-42f9-96d6-4ded58c9151b","keyword":"HCl脱除效率","originalKeyword":"HCl脱除效率"}],"language":"zh","publisherId":"gcrwlxb200905050","title":"水蒸气对氧化钙脱氯效率影响的实验研究","volume":"30","year":"2009"}],"totalpage":406,"totalrecord":4051}