钢铁, 2006, 41(2): 11-15.
高炉喷吹用煤的摩擦电选实验研究
{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为提高低合金高强铸钢( HSLA)的综合力学性能,满足恶劣环境下的使用要求。采用光学显微镜、扫描电镜、透射电镜、冲击试验机、万能材料试验机研究了3种不同冷速及高温回火对HSLA铸钢组织与力学性能的影响。结果表明:随冷速增加,淬火组织发生由多边形铁素体+针状铁素体+粒状贝氏体→粒状贝氏体+板条贝氏体→准上贝氏体+板条马氏体的演变。冷速为1℃/s的空冷样,具有最高的塑韧性;冷速最大的水冷样,其强度、硬度最高。冷却样经580℃回火,其晶界、板条界均有粒状、短棒状的纳米第二相析出,EDS分析表明,100~200 nm的析出相为合金渗碳体( M3 C),而50 nm以内的析出相为( V,Ti)( C,N)。空冷样回火后有较高强度、最高的塑韧性;油冷、水冷样回火后,Re提高,Rm略有下降,AkU降低与高温回火脆性的发生有关,但-40℃的AkU仍有60、40 J,具有较好的低温冲击韧性。可见,试验HSLA铸钢表现出良好的综合力学性能,能满足在恶劣环境下的使用要求。","authors":[{"authorName":"雷勇","id":"9c2a8651-6648-474e-9349-853936e2d951","originalAuthorName":"雷勇"},{"authorName":"许晓嫦","id":"4d9ecf7d-c7da-4814-9afc-4d90e7259b25","originalAuthorName":"许晓嫦"},{"authorName":"李良","id":"415498f9-8417-4734-af93-3e45219b5f1a","originalAuthorName":"李良"},{"authorName":"张奇","id":"4148284b-bffc-4a4f-bdf6-4801778da84f","originalAuthorName":"张奇"},{"authorName":"徐浩浩","id":"17d9943a-8199-487b-8f50-cd143e404727","originalAuthorName":"徐浩浩"},{"authorName":"赵凤晓","id":"8ba5cd62-38aa-43d9-b519-fb2fa202ee39","originalAuthorName":"赵凤晓"}],"doi":"","fpage":"6","id":"51bdc853-7fa0-4f75-823a-56c04a74e8fe","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"1a99ac2e-e504-496d-b755-a869848294f1","keyword":"低合金高强铸钢","originalKeyword":"低合金高强铸钢"},{"id":"788ffed8-9e4d-4bb9-bbef-a565f321effd","keyword":"冷却速率","originalKeyword":"冷却速率"},{"id":"e336ce81-d862-4a1f-9cf2-d00a37da4e57","keyword":"高温回火","originalKeyword":"高温回火"},{"id":"bb0fc020-59d2-4e8e-8a3c-036c1dec0a54","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"335b5d56-2dda-49ed-82e6-8cb2ebf89bc9","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clkxygy201405002","title":"冷速及高温回火对低合金高强铸钢组织性能的影响","volume":"","year":"2014"},{"abstractinfo":"为了有效改善高锰钢的组织和性能,通过变质处理和弥散处理相结合的方法,采用X射线衍射( XRD)、光学显微镜、扫描电镜( SEM)及透射电镜( TEM),对稀土-低熔点合金变质高锰钢时效析出相进行研究.结果表明:实验用钢在460℃时效1 h时,基体上开始有球状析出相析出,随着时效时间的延长,析出相由球状向针状转变;520℃时效1 h,晶界上有少量的球状析出相,基体上析出相为细针状;580℃时效1 h,析出相为粗大的针状,且基体发生了奥氏体向珠光体转变.随着时效温度的升高,变质高锰钢时效析出相由球状转变为针状,针状析出相与球状析出相晶体结构不同,针状析出相更加趋于稳定.变质高锰钢的硬度随着析出相增多而升高,( Mn,Fe)7 C3细针状析出相在冲击韧性和耐磨性起主导因素,变质高锰钢最佳时效工艺应使耐磨析出相析出,且未引起微观应变增大.本次实验用钢最佳时效工艺参数为520℃下时效1 h.","authors":[{"authorName":"李良","id":"db740241-ab9a-42b3-aa18-725b7b1107a2","originalAuthorName":"李良"},{"authorName":"许晓嫦","id":"eb132b96-b124-466e-a884-98adc2eed152","originalAuthorName":"许晓嫦"},{"authorName":"张奇","id":"fe576840-33e5-4e27-b5ec-12b5a1895137","originalAuthorName":"张奇"},{"authorName":"雷勇","id":"263eea71-8dd3-4d15-8241-b1a2f9939988","originalAuthorName":"雷勇"},{"authorName":"徐浩浩","id":"10f56745-f283-447a-9a7f-b8d9621c6a08","originalAuthorName":"徐浩浩"},{"authorName":"吴峰","id":"bdd7924d-8b75-47a2-99a8-6d165a21866a","originalAuthorName":"吴峰"}],"doi":"","fpage":"10","id":"dfd7d93d-eb1f-4123-94a0-8fbed6ce0118","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"4351d853-da84-4059-b4c6-5e06ff01d493","keyword":"变质高锰钢","originalKeyword":"变质高锰钢"},{"id":"9f8f3dee-bb68-47e5-8784-f8794cb7daf4","keyword":"时效处理","originalKeyword":"时效处理"},{"id":"fc0a6ea2-d8dc-4b0d-a5b5-504b58fca428","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"f016c5fc-487f-459c-a6fd-4324cdbb8ad1","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"3fa1cd66-3c89-4009-9eaa-35c406e09a34","keyword":"耐磨析出相","originalKeyword":"耐磨析出相"}],"language":"zh","publisherId":"clkxygy201406003","title":"变质高锰钢析出相的演变及力学性能的研究","volume":"","year":"2014"},{"abstractinfo":"单轴、双轴和三轴徐变试验结果表明,混凝土的徐变与弹性变形一样具有空间特性,但根据单轴徐变试验得到的徐变系数、徐变泊松比以及采用叠加原理计算的双轴、三轴应力状态下的空间徐变与实际情况存在较大偏差.为了准确计算不同应力状态下混凝土的空间徐变,介绍了应力组合对有效徐变泊松比的影响和基于有效徐变泊松比的空间徐变计算方法.另外,根据应力张量的弹性力学意义,引入了球应力徐变系数(ψ)m和偏应力徐变系数(ψ) d,提出了基于这两个徐变系数的空间徐变计算统一表达式,可计算混凝土在单轴、双轴和三轴等不同应力状态下的空间徐变.","authors":[{"authorName":"黄胜前","id":"f60fe1e8-6699-466b-8f2e-355e391d0c51","originalAuthorName":"黄胜前"},{"authorName":"杨永清","id":"0ad9d4be-4c12-4497-a380-8dee2c8f7ad4","originalAuthorName":"杨永清"},{"authorName":"李晓斌","id":"a5e2e801-c9b9-4f4b-886e-c62ae3c23491","originalAuthorName":"李晓斌"},{"authorName":"陈志伟","id":"db16b3f8-4c53-49d7-bdd3-f6cf5f2247c1","originalAuthorName":"陈志伟"}],"doi":"","fpage":"150","id":"77593762-6ffb-4cfa-913f-f64ffef2186c","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"69ea1570-d4c9-437e-bfef-97ae77a244a5","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"9785e9c9-1fc1-4ea3-ab52-a37f97e3f32e","keyword":"单轴","originalKeyword":"单轴"},{"id":"4565bb1b-db4a-4cd3-8595-f4cc47900c42","keyword":"双轴","originalKeyword":"双轴"},{"id":"59877901-b9f9-4bd2-a23d-bca130502b51","keyword":"三轴","originalKeyword":"三轴"},{"id":"375cdb53-1ae1-4106-b024-cece1bb5b8eb","keyword":"应力状态","originalKeyword":"应力状态"},{"id":"2edbc816-e655-4662-9602-f0529134d608","keyword":"空间徐变","originalKeyword":"空间徐变"}],"language":"zh","publisherId":"cldb201302040","title":"不同应力状态下混凝土空间徐变的统一表达式","volume":"27","year":"2013"},{"abstractinfo":"为了研究不同配合比设计方法对再生混凝土长期徐变性能的影响,分别采用等体积砂浆法(EMV法)与传统替代法配制再生混凝土,测试各组再生混凝土试件28 d龄期后自然条件下持荷的变形值和相同试验条件下试件的收缩值,并计算各组试件的徐变度.研究结果表明:两种方法配制的再生混凝土的收缩徐变变化规律与对比普通混凝土相似.EMV法可有效改善再生混凝土的徐变性能,具有较低的徐变度.","authors":[{"authorName":"霍俊芳","id":"55188923-049c-49aa-994c-ac564398860f","originalAuthorName":"霍俊芳"},{"authorName":"李晨霞","id":"8fa10b03-f76b-44b4-97ee-bd67d36d407e","originalAuthorName":"李晨霞"},{"authorName":"侯永利","id":"83d612b7-ba2c-46d3-a2ff-d86f396b5f77","originalAuthorName":"侯永利"},{"authorName":"吕笑岩","id":"98dd9616-8bca-4990-9631-ef1c189dce52","originalAuthorName":"吕笑岩"}],"doi":"","fpage":"723","id":"dc2db04e-0a0c-4741-830f-d84f7a4e5aee","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d2a7136a-24da-4dc5-b2c8-c753ce344b72","keyword":"再生混凝土","originalKeyword":"再生混凝土"},{"id":"46b36702-7dae-4dad-b1c2-1996ae105250","keyword":"配合比","originalKeyword":"配合比"},{"id":"69440820-bb2f-4272-abe2-bdc4edbd2d6e","keyword":"徐变","originalKeyword":"徐变"}],"language":"zh","publisherId":"gsytb201702054","title":"再生粗骨料混凝土收缩徐变性能试验","volume":"36","year":"2017"},{"abstractinfo":"本文阐述了FRP应力松弛、徐变性能的研究意义,总结了国内外关于应力松弛、徐变性能的最新研究成果及主要影响因素,并探讨了应力松弛和徐变的计算模型,对未来FRP长期性能研究的发展方向做出了展望.","authors":[{"authorName":"李建辉","id":"0f7148fe-f8bb-4e01-9827-43b6d6088f0a","originalAuthorName":"李建辉"},{"authorName":"邓宗才","id":"734ba4b3-500c-4ca4-adda-8e3a09ca07b3","originalAuthorName":"邓宗才"}],"doi":"10.3969/j.issn.1003-0999.2007.03.016","fpage":"56","id":"59ffbb46-47b1-40d6-8ec4-254b9f0174de","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"3192da00-b6fe-4a92-a3fe-eec5f9cca17e","keyword":"FRP","originalKeyword":"FRP"},{"id":"812f44d9-8adc-47b7-95e7-d14c2fe8670d","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"37e0f5f2-7caa-403e-96f9-d45fa60555ee","keyword":"徐变","originalKeyword":"徐变"},{"id":"290bc541-6726-480e-a116-34147a7cb2ae","keyword":"前景展望","originalKeyword":"前景展望"}],"language":"zh","publisherId":"blgfhcl200703016","title":"FRP应力松弛及徐变性能的研究近展","volume":"","year":"2007"},{"abstractinfo":"采用自制的徐变加载装置,研究了聚乙烯醇(PVA)纤维、双掺粉煤灰和矿渣以及减缩剂对7d等强度混凝土徐变性能的影响规律,结合与混凝土同水胶比浆体的化合结合水量分析了其影响机理.结果表明,混凝土徐变系数发展较快,加载100d左右趋于稳定;减缩剂和双掺矿物掺合料均明显降低了混凝土的徐变系数,以掺减缩剂效果更好,450d值仅为0.63,而PVA纤维增加了徐变系数;混凝土的徐变系数随浆体化学结合水量的增加而降低,60d早龄期浆体水化有利于降低徐变系数,450d后期水化产物对降低混凝土的徐变系数贡献不大.","authors":[{"authorName":"何智海","id":"d284a902-9f8e-4b08-94b4-bb64a0ab69a8","originalAuthorName":"何智海"},{"authorName":"钱春香","id":"0ffbbe0c-1b53-4782-aa33-1b1c9ed2432d","originalAuthorName":"钱春香"},{"authorName":"钱桂枫","id":"dd861e3b-72df-4e42-acc8-72f6bb385518","originalAuthorName":"钱桂枫"},{"authorName":"孟凡利","id":"28a07ab2-0d08-4d67-b8cb-ea65ad3f7ef0","originalAuthorName":"孟凡利"},{"authorName":"程飞","id":"8f433d59-aca3-4626-a346-16e01790b998","originalAuthorName":"程飞"},{"authorName":"高祥彪","id":"6c683991-a878-456e-ae60-df7fce0e0d8b","originalAuthorName":"高祥彪"},{"authorName":"庄园","id":"e0d49cad-3f8c-4544-8501-e47b67079e01","originalAuthorName":"庄园"}],"doi":"","fpage":"925","id":"012cf742-03f0-418f-88af-49ca86d1e1fb","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7473f418-c202-45ab-81d0-4cf29e9e7c03","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"48514fe2-20e4-4695-aa58-fea087a0e070","keyword":"徐变系数","originalKeyword":"徐变系数"},{"id":"67a4ff0b-a8af-44ec-bfc8-714b1c72b529","keyword":"化学结合水","originalKeyword":"化学结合水"},{"id":"76f5dbf7-811b-463b-8ed6-5e1d515f895b","keyword":"减缩剂","originalKeyword":"减缩剂"},{"id":"5ea7a23a-4846-468e-a494-01c352107864","keyword":"等强度","originalKeyword":"等强度"}],"language":"zh","publisherId":"gncl201105040","title":"等强度下混凝土组分对徐变性能的影响","volume":"42","year":"2011"},{"abstractinfo":"采用自制的徐变加载装置,研究了萘系减水剂、聚羧酸减水剂以缓凝组分、减缩组分对等配合比混凝土徐变的影响规律,结合与混凝土同水灰比浆体非可蒸发水含量及混凝土内部相对湿度演化分析了其影响机理.结果表明,相比萘系减水剂,聚羧酸减水剂能显著降低混凝土的徐变,其中以早强型聚羧酸减水剂的效果最好;减缩剂对混凝土的徐变有降低作用,缓凝组分的掺入对徐变有不利影响;聚羧酸减水剂和减缩组分能通过降低混凝土内部水分传输和向外界扩散来降低徐变;早强型聚羧酸使浆体具有较多的水化产物数量,对强度的增加和徐变的降低有一定好处,缓凝组分的掺入会延缓水化并减少总水化产物数量,降低强度,使徐变增加.","authors":[{"authorName":"张异","id":"ec340278-6d5c-4d88-99cd-92ecbf14c3de","originalAuthorName":"张异"},{"authorName":"钱春香","id":"6283fdf1-1e86-4f95-9386-4d0f621336ae","originalAuthorName":"钱春香"},{"authorName":"赵飞","id":"c2e62026-2cba-44d3-98ea-9c4bea97ae2a","originalAuthorName":"赵飞"},{"authorName":"何智海","id":"e248a81c-0309-4f52-948c-33abefbfdb85","originalAuthorName":"何智海"},{"authorName":"曲军","id":"8ffd3667-7c95-4a2c-8af6-473aba7b8aff","originalAuthorName":"曲军"},{"authorName":"郭景强","id":"bb3a41ea-646e-4070-aa43-4fa748725358","originalAuthorName":"郭景强"},{"authorName":"","id":"3c1baf9a-ef00-41d3-b730-79569cbe2b9d","originalAuthorName":""}],"doi":"10.3969/j.issn.1001-9731.2013.11.023","fpage":"1620","id":"d3cbe933-f50e-4134-ab17-c124ad18db38","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"66f7978b-6b62-4021-bd9e-469d3dde0824","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"8efa8ed0-5daf-4d86-9e26-abc4fd830f4e","keyword":"徐变度","originalKeyword":"徐变度"},{"id":"5996e33b-b097-423e-8fbf-add299a3954b","keyword":"减水剂","originalKeyword":"减水剂"},{"id":"3c88bb35-44c2-4bbe-8948-58e858e7e724","keyword":"非可蒸发水","originalKeyword":"非可蒸发水"},{"id":"4ea69246-a041-47fb-b0a5-bf55e9a04887","keyword":"内部相对湿度","originalKeyword":"内部相对湿度"}],"language":"zh","publisherId":"gncl201311023","title":"化学外加剂对混凝土徐变的影响规律研究","volume":"44","year":"2013"},{"abstractinfo":"通过试验研究了两种水胶比分别为0.33和0.29的自密实轻骨料混凝土(SCLC)的收缩和徐变性能,并与配合比相似的普通骨料自密实混凝土(SCC)及强度接近的普通混凝土(NC)进行了对比.收缩试验从入模后12小时开始,至6个月结束.徐变试验从3天龄期开始加载,分别在7、14、21和28天继续加载,而后保持荷载不变,加载应力水平分别为相应龄期抗压强度的40%,持续12个月.试验结果表明:SCLC前10天龄期有轻微膨胀现象,收缩变形始终小于SCC和NC,至6个月时三者有接近趋势;360天龄期SCLC徐变系数低于NC和SCC,而徐变度则高于NC,与SCC相当;随着抗压强度的提高,SCLC的徐变系数和徐变度均有减小趋势.","authors":[{"authorName":"张云国","id":"16e79cf1-667b-4b63-a680-75192c67cc80","originalAuthorName":"张云国"},{"authorName":"吴熙","id":"c8c8bf57-2238-443e-b3f5-68faf6c95c1b","originalAuthorName":"吴熙"},{"authorName":"毕巧巍","id":"53a4a4dd-eb63-489e-b93b-8843a640a8f5","originalAuthorName":"毕巧巍"}],"doi":"","fpage":"35","id":"f5a97de4-eadc-4787-a106-96421737e788","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7fcb2640-af48-423a-90f7-db4c26ea5cbf","keyword":"自密实轻骨料混凝土","originalKeyword":"自密实轻骨料混凝土"},{"id":"6fdf6cba-8402-435d-b3d3-27f13262dac3","keyword":"工作性能","originalKeyword":"工作性能"},{"id":"c59a40e0-7825-4deb-bf9b-3546aa6dcfc0","keyword":"收缩","originalKeyword":"收缩"},{"id":"18387f5c-7d51-4bb5-ac2c-1d89f8063394","keyword":"徐变","originalKeyword":"徐变"}],"language":"zh","publisherId":"clkxygc201401008","title":"自密实轻骨料混凝土的收缩与徐变性能","volume":"32","year":"2014"},{"abstractinfo":"通过合成的聚乙二醇马来酸半酯大单体(PMAn)取代部分烯丙基聚氧乙烯醚(XPEG)进行共聚反应,得到了徐放型聚羧酸系高性能减水剂.合成影响因素的研究结果表明,当PMAn分子量为750且PMAn取代XPEG的比例为20%时,减水剂的减水率和保坍能力最好.红外光谱分析结果表明,合成的减水剂未聚合的单体残留很少;采用合成的减水剂配制的混凝土具有突出的坍落度保持能力.","authors":[{"authorName":"麻秀星","id":"2b1630b6-d319-4bea-8e15-d7b14f669137","originalAuthorName":"麻秀星"},{"authorName":"钱觉时","id":"e8cd7b77-3bc8-43e8-a358-c40b1836b58a","originalAuthorName":"钱觉时"},{"authorName":"郭鑫祺","id":"29c3285a-b67e-4648-81f1-4ce5b29a5d4f","originalAuthorName":"郭鑫祺"},{"authorName":"方云辉","id":"b3fb147b-9142-48ec-8b35-2efe35c7fe44","originalAuthorName":"方云辉"},{"authorName":"蒋卓君","id":"8350f143-50e8-42d8-8fd5-c794e9a081a4","originalAuthorName":"蒋卓君"},{"authorName":"温庆如","id":"56bb2277-2ba2-41cd-b865-2f12c0e7d6d0","originalAuthorName":"温庆如"},{"authorName":"李苑","id":"414c4a65-66a1-4c50-b381-33a5c8cff238","originalAuthorName":"李苑"},{"authorName":"王智","id":"a9634129-6004-4324-a820-652e4049aab9","originalAuthorName":"王智"}],"doi":"","fpage":"55","id":"e3511b06-89e5-4ae6-84cb-d564b88b6375","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9361657c-b80e-4db4-ad8a-f51b1bc5ad99","keyword":"聚羧酸减水剂","originalKeyword":"聚羧酸减水剂"},{"id":"d31a1bc4-11a2-4d9e-b371-4fc9ea815a75","keyword":"徐放","originalKeyword":"徐放"},{"id":"208edaa2-19e0-40b8-b18a-ce19de5d5b8c","keyword":"合成","originalKeyword":"合成"},{"id":"5fd5115c-f08f-434c-9a61-f9b1ee79d42c","keyword":"聚乙二醇马来酸半酯","originalKeyword":"聚乙二醇马来酸半酯"}],"language":"zh","publisherId":"cldb201020017","title":"徐放型聚羧酸系减水剂的合成研究","volume":"24","year":"2010"},{"abstractinfo":"选取比较常用的纤维掺量,以普通聚丙烯纤维和钢纤维作参照,研究了聚丙烯粗纤维对混凝土加载1 a后抗压徐变性能的影响,并分析了其机理,结果表明:尽管普通聚丙烯纤维和聚丙烯粗纤维材质相同,但由于其体积掺量相对较小,对混凝土受力后的变形行为作用不大,可以忽略其对混凝土徐变性能的影响;钢纤维的外形尺寸、体积掺量以及在混凝土内的分布均与聚丙烯粗纤维相似,但可以凭借其较高的弹性模量抑制混凝土的抗压徐变;而低弹性模量的聚丙烯粗纤维对混凝土弹性模量及内部缺陷影响较大,明显削弱了混凝土抵抗徐变的能力,聚丙烯粗纤维混凝土1 a徐变度较基准混凝土增大了17.0%.","authors":[{"authorName":"于俊超","id":"1e4a3c54-375f-42b3-a9b2-185f9e5949a9","originalAuthorName":"于俊超"},{"authorName":"赵庆新","id":"0f305245-7c3b-4167-9fa5-1aaac9721659","originalAuthorName":"赵庆新"},{"authorName":"李迎华","id":"3ace3639-f4d4-4048-a20c-e6013ff1d05a","originalAuthorName":"李迎华"},{"authorName":"魏会林","id":"987b7bf2-c542-46cd-8c8d-4aa8a4eb6f7b","originalAuthorName":"魏会林"},{"authorName":"李扬","id":"c6c65057-2266-4f5b-9120-d2248f2e73a1","originalAuthorName":"李扬"}],"doi":"","fpage":"1723","id":"e6bb4725-e7bf-4a3e-87c3-3ecc39188ea2","issue":"9","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"239eefff-e6c8-4f5f-a269-5e7e272886f1","keyword":"聚丙烯粗纤维","originalKeyword":"聚丙烯粗纤维"},{"id":"8d377685-83a0-4951-b854-4eda7ef886ea","keyword":"钢纤维","originalKeyword":"钢纤维"},{"id":"a434b882-b81d-444a-825b-614d2cee45e8","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"9c130672-e70b-496d-9e8c-f1f52ae0f1ca","keyword":"徐变","originalKeyword":"徐变"}],"language":"zh","publisherId":"gsytb201309006","title":"聚丙烯粗纤维对混凝土徐变性能的影响","volume":"32","year":"2013"}],"totalpage":7,"totalrecord":69}