欢迎登录材料期刊网

材料期刊网

高级检索

Some fundamental aspects related to inert anode development in molten CaCl(2)-CaO were investigated based on thermodynamic analysis, electrochemistry of metals and solubility of oxide measurements. The Gibbs free energy change of several key anodic reactions including electro-stripping of metals, electro-formation of metallic oxides, electro-dissolution of metallic oxides as well as oxygen and chlorine evolution was calculated and documented, for the first time, as a reference to develop metallic inert anode in chloride based melts. The anodic behaviors of typical metals (Ni, Fe, Co, Mo, Cu, Ag, and Pt) in the melt were investigated. The results confirmed the thermodynamic stability order of metals in the melts and revealed that surface oxide formation can increase the stability of the electrodes in CaO containing melt. Furthermore, solubility of several oxides (NiO, Fe(2)O(3), Cr(2)O(3), Co(3)O(4), NiFe(2)O(4)) in pure CaCl(2) or CaCl(2)-CaO melts was measured to evaluate the stability of oxide coating or a cermet inert anode in the melt. It was found that the solubility of NiO decreased with increasing CaO concentration, while that of Fe(2)O(3) increased. Ni coated with NiO film had much higher stability during anodic polarization. (C) 2011 Elsevier Ltd. All rights reserved.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%