{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在输油管线内油水两相流动环境下,临界流速临界倾角是决定油相对管底积液携带特性乃至管道内腐蚀机理的关键参数.本文从管道底部含水率分布规律的角度提出了积液的判断准则,并基于油水两相流动力学特性,建立了一个基于积液机理的临界流速预测模型,并研究了管道几何条件和流动条件对于临界流速临界倾角的影响机制.结果表明:管径越大,水平直管的临界流速越大;流速越大,相应的临界倾角也越大.","authors":[{"authorName":"王凯","id":"099d8e1d-0f4c-47b6-8731-75ed35ee7746","originalAuthorName":"王凯"},{"authorName":"陈彦霖","id":"c73989cd-4d18-4af8-b46b-f67fa7abf8c1","originalAuthorName":"陈彦霖"},{"authorName":"王跃社","id":"431cd93e-a5b8-4a72-bf1c-6c443343d077","originalAuthorName":"王跃社"},{"authorName":"李秀峰","id":"7d2b9326-bf3f-4451-becb-121f9bef3e37","originalAuthorName":"李秀峰"}],"doi":"","fpage":"1257","id":"bf7f3509-78e0-4686-a3ca-89c269f7d975","issue":"6","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"58d7bc6d-e0cf-4ce2-9529-7a1528d37a23","keyword":"油水两相流","originalKeyword":"油水两相流"},{"id":"bc107045-2e51-4547-9a13-27f27891d764","keyword":"积液","originalKeyword":"积液"},{"id":"a824f011-2e82-4806-9639-8706863a428a","keyword":"临界流速","originalKeyword":"临界流速"},{"id":"d383e839-3c65-476f-82c3-eb66b0d637d4","keyword":"临界倾角","originalKeyword":"临界倾角"}],"language":"zh","publisherId":"gcrwlxb201506020","title":"基于油水流动特性的输油管线积液规律研究","volume":"36","year":"2015"},{"abstractinfo":"根据我国南海某油田平台生产管线的历年穿孔记录,分析了影响管线服役寿命的因素.结果表明,管输流体流速对管线服役寿命起决定作用.从统计曲线上估算了临界流速的大小,当流速超过上述临界值时,管线服役寿命不会超过2年;临界流速从2004年时的4.5 m/s下降到2004年后(2005、2006到2007年至今)的2.0 m/s,是造成该油田近年来穿孔频率加大的根本原因.","authors":[{"authorName":"翁永基","id":"c0dc8d6a-5f6c-4adc-b96e-ec9f5eee09a4","originalAuthorName":"翁永基"},{"authorName":"吴志伟","id":"e3149d76-e3bd-4fe1-ba30-8a66c195a00a","originalAuthorName":"吴志伟"},{"authorName":"潘涵","id":"fa3b2ca7-3e6c-4025-875e-92826c29ba73","originalAuthorName":"潘涵"}],"doi":"10.3969/j.issn.1002-6495.2008.05.014","fpage":"361","id":"92e0e5bf-1f79-4758-af65-7449646e775f","issue":"5","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"29bd44f4-c1da-46e2-b7e2-d34e0dad73b3","keyword":"海上油田","originalKeyword":"海上油田"},{"id":"c30b1b41-c993-43e4-80f3-2992ad2d1fc0","keyword":"平台生产管线","originalKeyword":"平台生产管线"},{"id":"89ef5f33-1de8-4aa9-a4fa-b63f8fab731c","keyword":"服役寿命","originalKeyword":"服役寿命"},{"id":"9425dd66-f26c-4908-98eb-aaab14ade50f","keyword":"临界流速","originalKeyword":"临界流速"},{"id":"57921170-fb59-4ce4-8d22-b7edcbe34eb0","keyword":"磨损腐蚀","originalKeyword":"磨损腐蚀"}],"language":"zh","publisherId":"fskxyfhjs200805014","title":"海上平台生产管道的服役寿命分析","volume":"20","year":"2008"},{"abstractinfo":"利用交流阻抗(EIS)、线性极化、动电位极化和失重法,研究了炔氧甲基季胺盐对N80在常温CO2饱和的3%NaCl溶液中的电化学行为和缓蚀性能的影响.结果表明:空白溶液中N80的累计失重在4 m/s以后急剧增大,即介质的临界流速为4~5 m/s.动态下炔氧甲基季胺盐存在与静态下相同的浓度极值现象,流速低于5 m/s时缓蚀剂的极值浓度与静态时相同,都为150 mg/L,而流速高于5 m/s后极值浓度有所增加.","authors":[{"authorName":"蒋秀","id":"58c7fede-9958-410e-a08d-14eb57ce9b0b","originalAuthorName":"蒋秀"},{"authorName":"郑玉贵","id":"c06523ea-eea9-43ce-9803-33c0d8e1e18e","originalAuthorName":"郑玉贵"},{"authorName":"祝英剑","id":"8f64156d-94ac-49c1-a098-2d17c0fe1046","originalAuthorName":"祝英剑"},{"authorName":"柯伟","id":"ff43a53b-f58d-44e2-88a3-898377b5bb1f","originalAuthorName":"柯伟"}],"doi":"10.3969/j.issn.1005-4537.2004.04.010","fpage":"234","id":"1654bfd7-2fcb-4dd3-bb7b-9fcfe542aa2c","issue":"4","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"c40775e1-29a4-44b7-8b76-39d9bf5f9bd5","keyword":"炔氧甲基季胺盐","originalKeyword":"炔氧甲基季胺盐"},{"id":"2a0d69aa-8fbb-433c-926e-fc423e520d76","keyword":"临界流速","originalKeyword":"临界流速"},{"id":"b08249d4-7085-4a74-a2e4-573168ed5833","keyword":"电化学测试","originalKeyword":"电化学测试"},{"id":"0c1decc4-9a74-49ec-a7e9-40263f3aabc7","keyword":"浓度极值","originalKeyword":"浓度极值"}],"language":"zh","publisherId":"zgfsyfhxb200404010","title":"流动条件下炔氧甲基季胺盐的缓蚀性能研究","volume":"24","year":"2004"},{"abstractinfo":"研究了双相钢在流动含砂的3.5%NaCl溶液中的磨损腐蚀规律,测定、分析了流动体系中的电化学阻抗谱,揭示了双相钢磨损腐蚀过程中电化学的作用及其机制.结果表明,腐蚀电化学因素在磨损腐蚀过程中起主要作用,流体力学因素只是加速了腐蚀电化学过程.阻抗谱在低频区出现一直线段和低频收缩现象,分别是双相钢在磨损腐蚀过程中电极处于自钝化状态,并受离子在钝化膜中的扩散、迁移过程控制和电极表面局部遭受破坏的特征.对于流动体系中电化学阻抗谱的分析,曹氏阻抗理论同样适用.","authors":[{"authorName":"雍兴跃","id":"9784df4e-abc1-4bbe-a79f-b5d4f46e06c9","originalAuthorName":"雍兴跃"},{"authorName":"林玉珍","id":"8e45d734-c51a-4602-b416-558ef226980d","originalAuthorName":"林玉珍"},{"authorName":"刘景军","id":"73ded056-05ed-4d28-8f81-268fab46ed8d","originalAuthorName":"刘景军"},{"authorName":"刘淑静","id":"7b7923f9-98f5-45fe-87aa-1109fec44e07","originalAuthorName":"刘淑静"}],"doi":"10.3321/j.issn:0412-1961.2001.07.014","fpage":"745","id":"31e4930e-236c-4847-8b5f-f921b3352b3f","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"b25831cb-d039-4e4e-9a28-c886f446fb7e","keyword":"双相钢","originalKeyword":"双相钢"},{"id":"28bfec53-735c-40c3-9b97-ba420e9f9ac4","keyword":"含砂NaCl溶液","originalKeyword":"含砂NaCl溶液"},{"id":"acb1835d-713b-40f6-9f86-4835f5b37b4b","keyword":"临界流速","originalKeyword":"临界流速"},{"id":"76be6842-a2a1-4395-8824-6547c5aa6f16","keyword":"磨损腐蚀","originalKeyword":"磨损腐蚀"},{"id":"e4835b74-99e5-41a9-b631-335a1c7a02c4","keyword":"腐蚀电化学","originalKeyword":"腐蚀电化学"},{"id":"baa4a814-dea1-4413-9092-124a81354932","keyword":"流体力学","originalKeyword":"流体力学"}],"language":"zh","publisherId":"jsxb200107014","title":"双相钢在流动中性含砂氯化物中的磨损腐蚀","volume":"37","year":"2001"},{"abstractinfo":"液态金属的非透明性和相对较高的温度,给流速的测量带来了众多困难.为此介绍了几种液态金属的流速测量技术,分析了各种流速测量技术的特点,为在研究和实验中正确地选择和使用合适的测量设备提供依据和参考.","authors":[{"authorName":"于湛","id":"dabc2d51-de7f-481b-a5cb-52255c508f84","originalAuthorName":"于湛"},{"authorName":"雷作胜","id":"3eef90f6-aabb-44f1-8ea2-a7eee32c2a45","originalAuthorName":"雷作胜"},{"authorName":"贾洪海","id":"789afea6-1710-4f34-8e4f-e1da2843c9aa","originalAuthorName":"贾洪海"},{"authorName":"金小礼","id":"2b9ecb0f-fe16-421e-ae70-f8fdf5d0a6d9","originalAuthorName":"金小礼"},{"authorName":"任忠鸣","id":"4c78f54e-361e-43b6-b542-b8a98dd61460","originalAuthorName":"任忠鸣"},{"authorName":"邓康","id":"0d38e155-ba81-4adf-b262-a077d313c242","originalAuthorName":"邓康"},{"authorName":"钟云波","id":"a19786d5-70b0-426e-aaf4-592773436da7","originalAuthorName":"钟云波"}],"doi":"10.3969/j.issn.1001-7208.2007.02.012","fpage":"54","id":"f8a6bedd-b002-4af8-9da8-85e77b1b622f","issue":"2","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"7e8a502d-511f-4c63-898f-568057723b95","keyword":"液态金属","originalKeyword":"液态金属"},{"id":"6bb7b8ee-761a-40f8-ae37-115d3ff58f25","keyword":"流速测量","originalKeyword":"流速测量"},{"id":"947f4819-1de1-4f80-b310-a89fd410c9f6","keyword":"测速方法","originalKeyword":"测速方法"},{"id":"f2423acb-b773-4393-b8ba-82059cbfee0a","keyword":"技术进展","originalKeyword":"技术进展"}],"language":"zh","publisherId":"shjs200702012","title":"液态金属流速的测量技术","volume":"29","year":"2007"},{"abstractinfo":"为了研究淬火槽中流速场的分布状态,提高流体均匀性,采用超声波多普勒流速测定仪对螺旋桨搅拌状态下的介质流速进行了测量,用有限元法对流速场进行了模拟,并根据模拟结果对均流片的设置进行了改进.结果表明,试验选用的超声波多普勒流速测定仪及其测量方法适合于测量工业淬火槽的介质流速;流速场的模拟可以用于指导淬火槽流速场均匀性的设计.\n","authors":[{"authorName":"陈乃录","id":"f2f1ee9d-d8e3-42a7-8ff0-d674eb592e54","originalAuthorName":"陈乃录"},{"authorName":"李强","id":"f05acd12-0596-49e8-8e33-8734567be7e8","originalAuthorName":"李强"},{"authorName":"廖波","id":"958e5a0f-21a3-4d1f-8a47-c1ebd9655b85","originalAuthorName":"廖波"},{"authorName":"王葛","id":"85c642fa-0e70-45f6-95ba-f5e39e12578f","originalAuthorName":"王葛"},{"authorName":"潘健生","id":"3a1658c2-1550-4983-9397-c6cc195aec60","originalAuthorName":"潘健生"}],"doi":"10.3969/j.issn.1009-6264.2002.02.009","fpage":"33","id":"b095459e-ef41-4d1e-82f8-c3f4f50791df","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"7411b4a9-bca7-41cc-972a-547f5134a9dc","keyword":"淬火槽","originalKeyword":"淬火槽"},{"id":"39de963d-1f51-4892-aa0a-c5f4ca4f9a72","keyword":"流速测量","originalKeyword":"流速测量"},{"id":"936ff2e6-7662-4acc-97af-7854a732c217","keyword":"流速场模拟","originalKeyword":"流速场模拟"}],"language":"zh","publisherId":"jsrclxb200202009","title":"淬火槽中介质流速的测量及流速场的模拟","volume":"23","year":"2002"},{"abstractinfo":"基于阵列电极技术使用自制的环路系统并采用极化、计算流体力学(CFD)模拟和表面分析技术研究环路系统中弯管段流速对 AZ91D 镁合金腐蚀行为的影响。实验结果表明,AZ91D 镁合金的腐蚀速率随着流速的增加而增加,且 AZ91D 镁合金在流动介质中的腐蚀可能存在临界流速。当介质的流速超过临界流速时,流体力学因素在 AZ91D 镁合金腐蚀中占主导地位;反之,电化学腐蚀因素占主导地位。","authors":[{"authorName":"田径","id":"9f3db66c-87bb-47ee-befb-68d7e4945b5e","originalAuthorName":"田径"},{"authorName":"黄华良","id":"8bf43b0c-ea64-4b69-aa17-e7c817c9ceab","originalAuthorName":"黄华良"},{"authorName":"潘志权","id":"593bb78a-83ac-4569-94d2-d73d1614f98b","originalAuthorName":"潘志权"},{"authorName":"周红","id":"55bd8f67-e8d6-4daf-a777-2d4bc4cef930","originalAuthorName":"周红"}],"doi":"10.1016/S1003-6326(16)64414-X","fpage":"2857","id":"6cbf82c9-94ad-41aa-91ad-6ec71d756d4a","issue":"11","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"78fd4bb3-09cc-438e-a3b8-ce5b16352ea8","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"b7ead501-f278-4c20-a4b9-54870b68d7f6","keyword":"流速","originalKeyword":"流速"},{"id":"7c4444a2-62ee-4a80-8bca-fd55a04e554f","keyword":"弯管","originalKeyword":"弯管"},{"id":"1369f60c-b7e4-4b5a-8b62-b5ace1662cf1","keyword":"计算流体力学(CFD)","originalKeyword":"计算流体力学(CFD)"},{"id":"f73efc2d-ace8-4bf6-8e49-5d903b7bc904","keyword":"极化","originalKeyword":"极化"}],"language":"zh","publisherId":"zgysjsxb-e201611008","title":"弯管段流速对 AZ91D 镁合金腐蚀行为的影响","volume":"26","year":"2016"},{"abstractinfo":"<正> 一、前言 金属材料在自然海水中的腐蚀数据通常是在自然海流(0.1~1米/秒)条件下获得的,但滨海的电站、石油、化工系统中的高流速管道、泵、热交换器、阀门以及高速舰船中的管道以至船体等,都处在较高流速(5~30米/秒)海水的环境中。因此,各国相继开展了高流速海水中金","authors":[{"authorName":"朱相荣","id":"1a41fdf4-24fc-4670-8c0c-58e9f23e4a78","originalAuthorName":"朱相荣"},{"authorName":"戴明安","id":"1273e0a7-4db2-410d-9bf6-b861de12c733","originalAuthorName":"戴明安"},{"authorName":"陈振进","id":"327bd506-8305-4463-bc49-9001e0143e79","originalAuthorName":"陈振进"},{"authorName":"杨朝晖","id":"b3aa9727-d449-47f2-9626-9153cc92cdae","originalAuthorName":"杨朝晖"},{"authorName":"梁采凤","id":"b7b1a08c-3c4d-496c-8b6a-9f1cdf3cd60a","originalAuthorName":"梁采凤"}],"categoryName":"|","doi":"","fpage":"173","id":"ddb09b7f-e765-402a-a4b0-1234724fcd93","issue":"2","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[],"language":"zh","publisherId":"1005-4537_1992_2_2","title":"高流速海水中金属材料的腐蚀行为","volume":"12","year":"1992"},{"abstractinfo":"在模拟腐蚀环境中研究流速对P110钢CO2腐蚀行为的影响,并用SEM技术分析在不同流速条件下材料表面腐蚀产物膜的厚度和形貌的变化.结果表明:随流速增大,P110钢的平均腐蚀速率在1.5m/s时达到峰值.流速增大有利于腐蚀性组元的物质和电荷传递促进腐蚀,但是也会引起腐蚀产物膜形貌和结构的变化,从而对物质和电荷传递过程构成阻碍.","authors":[{"authorName":"赵国仙","id":"2ab23041-7bbd-4457-b6f5-e2ab01223e70","originalAuthorName":"赵国仙"},{"authorName":"吕祥鸿","id":"6a525d0d-83f7-469b-82c3-b8ca476f29a0","originalAuthorName":"吕祥鸿"},{"authorName":"韩勇","id":"f0fd894c-8bef-424f-b331-158792fd234d","originalAuthorName":"韩勇"}],"doi":"10.3969/j.issn.1001-4381.2008.08.002","fpage":"5","id":"fa208920-c59a-4ccc-b394-f285c8efc8e8","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"3f34001d-ab48-4f08-86b5-bff34ee5be2f","keyword":"CO2腐蚀","originalKeyword":"CO2腐蚀"},{"id":"97fe895b-9993-4d3e-98ec-15c9ee02f4a5","keyword":"P110钢","originalKeyword":"P110钢"},{"id":"81508bac-efda-4f8c-aa4f-b0302678d036","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"},{"id":"0a9f5e66-c8a0-49ed-b7b4-f3b7d8c4a505","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"7c87a4ce-0039-445f-b35b-e60f878f8549","keyword":"流速","originalKeyword":"流速"}],"language":"zh","publisherId":"clgc200808002","title":"流速对P110钢腐蚀行为的影响","volume":"","year":"2008"},{"abstractinfo":"为了克服噪声对信号的影响,提出一种利用最大信噪比和相关法测量两相流速度的方法.基于最大信噪比的信号分离方法是一种盲源信号分离方法,该算法利用统计独立信号完全分离时信噪比最大作为分离准则,它具有非常低的计算复杂度.这里首先利用盲源信号分离方法分别提取出上游和下游两相流信号,并据此求出两相流信号的相关函数曲线,由此求出信号的渡越时间,最后给出仿真实验的处理结果.实验结果表明该方法能够满足两相流速度的测量要求.","authors":[{"authorName":"吴新杰","id":"493eb801-2121-45b8-81e3-4b5cc427e00f","originalAuthorName":"吴新杰"},{"authorName":"刘石","id":"273a37a4-2eb5-49eb-bd88-81b5dbe940ec","originalAuthorName":"刘石"},{"authorName":"许超","id":"3058f945-606b-4274-ba0b-2236e3727874","originalAuthorName":"许超"}],"doi":"","fpage":"2051","id":"9b4423c9-e3fa-40c9-9cb5-78da2381f53a","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"eb7cda2d-2784-4965-81eb-f4373dd22b4a","keyword":"最大信噪比","originalKeyword":"最大信噪比"},{"id":"63101a45-1e4a-451d-8193-9685d12ae7dc","keyword":"相关法","originalKeyword":"相关法"},{"id":"9f9b9ca6-7823-4402-83cc-c2f00074f12d","keyword":"速度","originalKeyword":"速度"},{"id":"ab070962-7fa9-4dc7-8c4c-0fc489ffdec8","keyword":"气-固两相流","originalKeyword":"气-固两相流"}],"language":"zh","publisherId":"gcrwlxb200912019","title":"基于最大信噪比测量两相流速度","volume":"30","year":"2009"}],"totalpage":600,"totalrecord":5991}