欢迎登录材料期刊网

材料期刊网

高级检索

镍基GH761合金热模拟压缩实验表明, 当变形温度Td一定时, 随应变速率ε的降低, 变形峰值应力σp和稳态流动开始应力σs及与它们对应的应变εp和 εs均降低; 当应变速率一定时, 随Td的升高,σp和σs以及εs均降低, 但εp基本不变.细化原始晶粒可提高再结晶形核率, 在此基础上降低变形温度和提高变形速率是细化最终晶粒的重要途径. 当应变达到完全再结晶时, 合金具有最均匀且细小的组织; 超过这一应变值, 晶粒开始长大. GH761合金的热变形本构方程为: ε=6.5×106σp4.86exp(-461×103/RT).

The flow stress-strain behavior of GH761 alloy was investigated via hot compression testing. The peak stress σp, starting steady--state stress σs, and corresponding strain εp, εs decrease with decreasing strain rate ε at constant temperature. At constant strain rate, σpσs and εs drop with rising temperature, but εp does not change obviously. On the basis of reducing original grain size, lowering deformed temperature and enhancing strain rate can well refine structure. The microstructure will be most homogenous and finest when the strain reaches the level that DRX is finished exactly. Further increasing the strain will promote the grain growth. The hot deformation constitutive equation obtained is as follows: ε=6.5×106σp4.86exp(-461×103/RT).

参考文献

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%