欢迎登录材料期刊网

材料期刊网

高级检索

采用液态金属冷却定向凝固技术制备了高铬Nb-Si金属间化合物基复合材料,分析了不同熔化温度和凝固速度下复合材料的相组成及组织特征.结果表明:Nb-22Ti-17Cr-16Si-2Al-2Hf(原子分数)合金相组成为Nbss、α-Nb5Si3、Laves相NbCr2和少量的(Nbss+Nb5Si3)共晶,定向凝固没有改变复合材料的相组成.熔化温度为1550℃时,Nbss相呈颗粒状,Nb5Si3相呈随机分布的块状或短板条状;随着熔化温度的提高,Nbss转变为枝晶状且沿轴向定向生长,Nb5Si3相转变为有一定定向效果的长板条状.随着凝固速度的增大,组织明显细化且定向效果增强,凝固速度为18 mm/min时,Nb5Si3呈定向效果良好的细长条状.

参考文献

[1] Bewlay B P,Jackson M R,Zhao J C,Subramanian P R.A review of very high-temperature Nb-Si based composites[J].Metallurgical and Materials Transactions A,2003,34 (10):2043-2052.
[2] Zhao J C,Westbrook J H.Ultrahigh temperature materials for jet engines[J].MRS Bulletin,2003,28(9):622-627.
[3] Tanaka R,Kasama A,Fujikura M,et al.Newly developed niobium-based superalloys for elevated temperature application[J].The Minerals,Metals & Materials Society,2004 (2):89-98.
[4] 刘肖,李玉龙,沙江波,马朝利.合金元素对Nb-Mo-Si合金相平衡及Nb-Nb5Si3共晶组织形态的影响[J].复合材料学报,2008,25(2):16-20.Liu Xiao,Li Yulong,Sha Jiangbo,Ma Chaoli.Effect of alloying additions on the phase equilibria and Nb-Nb5Si3eutectic morphologies of Nb-Mo-Si alloys[J].Acta Materiae Compositae Sinica,2008,25(2):16-20.
[5] Subramanian P R,Mendiratta M G,Dimiduk D M,Stucke M A.Advanced intermetallic alloys-Beyond gamma titanium aluminides[J].Materials Science and Engineering A,1997,239/240:1-13.
[6] Yang X X,Sha J B,Zhang H.Property responses in Nb-Si-Ti-Al-W-B-Cr alloys for high temperature applications[J].Materials Science Forum,2010,654/656:468-471.
[7] 白润,郑欣,李中奎,王东辉.元素合金化对Nb基高温合金组织和力学性能的影响[J].稀有金属材料与工程,2007,36(3):359-362.Bai Run,Zheng Xin,Li Zhongkui,Wang Donghui.Effect of alloying elements on the microstructure and mechanical properties of Nb-based high temperature alloys[J].Rare Metal Materials and Engineering,2007,36(3):359-362.
[8] 贾丽娜,李小溅,沙江波,张虎.定向凝固对Nb-14Si-22Ti-2Hf-2Al-4Cr合金组织和高低温力学性能的影响[J].稀有金属材料与工程,2010,39(8):1475-1479.Jia Lina,Li Xiaojian,Sha Jiangbo,Zhang Hu.Effects of directional solidification on microstructure and mechanical properties of Nb-14Si-22Ti-2Hf-2AL-4Cr alloy[J].Rare Metal Materials and Engineering,2010,39(8):1475-1479.
[9] Li X J,Chen H F,Sha J B,Zhang H.The effects of melting technologies on the microstructure and properties of Nb-16Si-22Ti-2Al-2Hf-17Cr alloy[J].Materials Science and Engineering A,2010,527:6140-6152.
[10] Sha J B,Hirai H,Tabaru T,Kitahara A,et al.Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures[J].Metall Mater Trans A,2003,34(1):85-94.
[11] Bewlay B P,Jackson M R,Lipsitt H A.The balance of mechanical and environmental properties of a multi-element niobium-niobium silicide-based in-situ composite[J].Metallurgical Materials Transactions,1996,27:3801-3808.
[12] Zelenitsas K,Tsakiropoulos P.Study of the A1 and Cr additions in the microstructure of Nb-Ti-Si in-situ composites[J].Intermetallics,2005,13:1079-1083.
[13] 郑海忠,鲁世强,肖旋,李鑫,等.Laves相NbCr2室温脆性的研究进展[J].稀有金属材料与工程,2007,36(1):178-182.Zheng Haizhong,Lu Shiqiang,Xiao Xuan,Li Xin,et al.Research progress on brittleness of Laves phase NbCr2 compounds at ambient temperature[J].Rare Metal Materials and Engineering,2007,36(1):178-182.
[14] Chan K S.Alloying effects on the fracture toughness of Nbbased silicides and Laves phases[J].Mateials Science and Engineering A,2005,409(1/2):257-269.
[15] Chan K S,Davidson D L.Improving the fracture toughness of constituent phases and Nb-based in-situ composites by a computational alloy design approach[J].Metall Mater Trans A,2003,34(9):1833-1849.
[16] 王勇,郭喜平.凝固速率对Nb-Ti-Si基合金整体定向凝固组织及固/液界面形态的影响[J].金属学报,2010,46(7):506-512.Wang Yong,Guo Xiping.Effect of solidifying rate on integrally directionally solidified microstructure and solid/liquid interface morphology of an Nb-Ti-Si base alloy[J].Acta Metallurgica Sinica,2010,46(7):506-512.
[17] 胡汉起.金属凝固原理[M].北京:机械工业出版社,2000:96-98.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%