采用基于密度泛函理论的第一性原理计算方法,研究了边缘对称和反对称的锯齿型石墨烯纳米带的电子结构,考察了BN链掺在不同位置时的影响.研究结果表明:B-N原子链有向边缘迁移的现象,并且其掺杂在石墨烯纳米带中央时对体系电子结构的改变很小,而掺杂在边缘时会使体系在费米能级附近的能带结构发生显著的变化.边缘被B-N链取代的石墨烯纳米带的能隙被打开,并产生了明显的自旋非简并现象.这些现象的出现归因于掺杂体系中边缘电子态的重新分布.
参考文献
[1] | Cai Jinming;Ruffieux P;Jaafar R et al.Atomically precise bottom-up fabrication of graphene nanoribbons[J].Nature,2010,466(7305):470. |
[2] | C. Stampfer;J. Guettinger;S. Hellmueller;F. Molitor;K. Ensslin;T. Ihn .Energy Gaps In Etched Graphene Nanoribbons[J].Physical review letters,2009(5):183-186. |
[3] | Ivar Martin;Ya. M. Blanter .Transport in disordered graphene nanoribbons[J].Physical review, B. Condensed matter and materials physics,2009(23):235132:1-235132:5. |
[4] | 刘欣欣,王小平,王丽军,李怀辉,梅翠玉,刘晓菲,杨灿,梁鹏飞,卢炎聪,江振兴,赵凯麟,刘仁杰.石墨烯的研究进展[J].材料导报,2011(23):92-97. |
[5] | Cervantes-Sodi F;Csanyi G;Piscanec S;Ferrari AC .Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties[J].Physical review, B. Condensed matter and materials physics,2008(16):165427-1-165427-13-0. |
[6] | Yazyev, OV .Emergence of magnetism in graphene materials and nanostructures[J].Reports on Progress in Physics,2010(5):056501:1-056501:16. |
[7] | Pearson J D;Zikry M A;Wahl K .Computational design of thin-film nanocomposite coatings for optimized stress and velocity accommodation response[J].Wear,2009,267(58):1137. |
[8] | Son YW;Cohen ML;Louie SG .Energy gaps in graphene nanoribbons[J].Physical review letters,2006(21):6803-1-6803-4-0. |
[9] | Blanca Biel;X. Blase;Francois Triozon;Stephan R .Anomalous Doping Effects On Charge Transport In Graphene Nanoribbons[J].Physical review letters,2009(9):217-220. |
[10] | Farmer DB;Golizadeh-Mojarad R;Perebeinos V;Lin YM;Tulevski GS;Tsang JC;Avouris P .Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices[J].Nano letters,2009(1):388-392. |
[11] | Bing Huang;Qimin Yan;Gang Zhou;Jian Wu;Bing-Lin Gu;Wenhui Duan;Feng Liu .Making a field effect transistor on a single graphene nanoribbon by selective doping[J].Applied physics letters,2007(25):253122-1-253122-3-0. |
[12] | Dutta S;Manna A K;Pati S K .Intrinsic half-metallicity in modified graphene nanoribbons[J].Physical Review Letters,2009,102(09):096601. |
[13] | E. Cruz-Silva;Z. M. Barnett;B. G. Sumpter;V. Meunier .Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles[J].Physical review, B. Condensed matter and materials physics,2011(15):155445:1-155445:9. |
[14] | Jun He;Ke-Qiu Chen;Zhi-Qiang Fan;Li-Ming Tang;W. P. Hu .Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons[J].Applied physics letters,2010(19):193305-1-193305-3. |
[15] | Wu W Z;Zhang Z H;Lu P .Electronic and magnetic properties of ziazag graphene nanoribbons with periodic protruded edges[J].Physical Review B:Condensed Matter,2010,82(08):085425. |
[16] | M. Topsakal;S. Ciraci .Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study[J].Physical review, B. Condensed matter and materials physics,2010(2):024107:1-024107:6. |
[17] | Bl(o)chl P E;F(o)rst C J;Schimpl J .The projector augmented wave method:Ab-initio molecular dynamics simulations with full wave functions[J].Bulletin of Materials Science,2003,26(01):33. |
[18] | Audouze C;Jollet F;Torrent M;Gonze X .Projector augmented-wave approach to density-functional perturbation theory[J].Physical review, B. Condensed matter and materials physics,2006(23):5101-1-5101-18-0. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%