欢迎登录材料期刊网

材料期刊网

高级检索

为理解和揭示第三种应变时效现象,对DH36钢在拉、压加载,温度从77 K到1 000 K,应变率从0.001/s到3000/s下的塑性流动行为进行了系统研究,分析了时效发生的规律、特性以及时效发生的温度、应变率和应变的关系.同时,基于间隙原子与位错相互作用的本质,探讨了第三种应变时效现象与滞弹性材料机械波谱(即内耗峰)关联性.研究表明:金属在第三种应变时效温度区经变形后,材料的强度会提高,且材料的韧性(即断裂应变)并不变化;第三种应变时效的发生需要一定的预变形以造成大量空位,这将有益于间隙原子在位错周围的扩散形成,当温度和变形率达到某一匹配值时,在后续连续的塑性变形过程中,围绕位错的间隙原子气团连续对位错拖曳使得位错滑移阻力增加,导致第三种应变时效发生;DH36钢应变时效发生时的峰值应力温度与应变率呈现指数关系;第三种应变时效发生的温度区与金属机械波谱(内耗峰)温度区基本一致,都具有波动性,所以本质上第三种应变时效是机械波谱的另一表现形式.

To understand the third-type strain aging phenomena,the plastic flow behavior of DH36 steel is systematically studied under tensile and compression load over a temperature range from 77 K to 1000 K,and a strain-rate range from 0.001/s to 3000/s.Based on essential interaction between interstitial atoms and dislocation,the relevancy relation between the internal friction peak(or mechanical spectroscopy) in anelastic materials and the third-type strain aging phenomena are explored.The reseaches show that through pre-deformation during the third-type strain aging temperature region,the strength of metal increases and its toughness does not change.In continuous plastic deformation,the interstitial atoms atmosphere around the dislocation continually drags and increases gliding resistance to the dislocation motion,this results in the third-type strain aging phenomena.The temperature of the aging peak stress is exponential to strain rate for DH36 steel.The occurring temperature region of the third-type strain aging phenomena is basically consistent with that of mechanical spectroscopy(the internal friction peak),essentially this aging is another mode of mechanical spectroscopy.

参考文献

[1] F. B. Klose;A. Ziegenbein;J. Weidenmuller;H. Neuhauser;P. Hahner .Portevin-LeChatelier effect in strain and stress controlled tensile tests[J].Computational Materials Science,2003(0):80-86.
[2] 钱匡武,李效琦,萧林钢,陈文哲,张好国,彭开萍.金属和合金中的动态应变时效现象[J].福州大学学报(自然科学版),2001(06):8-23.
[3] Cho SH.;Jonas JJ.;Yoo YC. .Static and dynamic strain aging in 304 austenitic stainless steel at elevated temperatures[J].Journal of Materials Science Letters,2000(22):2019-2022.
[4] Seong-Gu Hong;Keum-Oh Lee;Soon-Bok Lee .Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel[J].International Journal of Fatigue,2005(10/12):1420-1424.
[5] 彭开萍,陈文哲,钱匡武.3004铝合金"反常"锯齿屈服现象的研究[J].物理学报,2006(07):3569-3575.
[6] Sia Nemat-Nasser;Weiguo Guo .High strain-rate response of commercially pure vanadium[J].Mechanics of materials,2000(4):243-260.
[7] Sia Nemat-Nasser;Wei-Guo Guo .Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures[J].Mechanics of materials,2003(11):1023-1047.
[8] Wei-Guo Guo;Sia Nemat-Nasser .Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures[J].Mechanics of materials,2006(11):1090-1103.
[9] L.B.Magalas.体心立方金属中位错与间隙原子相互作用的回顾--机械波谱术研究[J].金属学报,2003(11):1145-1152.
[10] I. Tkalcec;D. Mari .Internal friction in martensitic, ferritic and bainitic carbon steel; cold work effects[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):213-217.
[11] M. Weller .The Snoek relaxation in bcc metals—From steel wire to meteorites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):21-30.
[12] M. Ivanchenko;V. Nevdacha;Y. Yagodzinskyy .Internal friction studies of carbon and its redistribution kinetics in Inconel 600 and 690 alloys under dynamic strain aging conditions[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):458-461.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%