通过常规拉伸、慢应变速率拉伸和晶间腐蚀实验研究了T6及双级时效处理对6156铝合金力学性能与腐蚀性能的影响,并采用透射电镜(TEM)观察了析出相特征.结果表明:6156合金在T6欠时效状态下晶内析出相主要为GP区,晶界无明显析出相;T6峰时效晶内析出相主要为β"相,出现少量的Q'相,晶界析出物呈连续分布,合金虽然具有最高强度,但晶间腐蚀严重,应力腐蚀敏感性最大;随时效时间延长,Q'相增多并逐渐粗化,晶界析出物粗大非连续分布;T78时效态晶内析出大量的Q'相,晶界析出相球化且析出相之间的间距增大,呈断续分布,无沉淀析出带(PFZ)变宽,因此相比T6态而言T78状态合金强度损失不大而耐蚀性得到明显提高.
参考文献
[1] | Miller W S;Zhuang L;Bottema J et al.[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2000,280(03):37. |
[2] | Masami Suzuki .[J].Materials Science Forum,2006,519-521:11. |
[3] | Dif R;Bes B;Warner T.Advances in the Metallurgy of Aluminum Alloys[M].Materials Park,OH:ASM International,2001:390. |
[4] | Svenningsen G;Lein J E;Bjorgum A et al.[J].Corrosion Science,2006,48(01):226. |
[5] | Larsen M H;Walmsley J C;Lunder O T et al.[J].Materials Science Forum,2006,519-521:667. |
[6] | Dif R;Bechet D;Warner T.[A].Tokyo:Japan Institute of Light Metals,1998:1991. |
[7] | Willians J C;Starke E A .[J].Acta Materials,2003,51:5775. |
[8] | Wang X;Poole W J;Esmaeili S et al.[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2004,34(11):2913. |
[9] | Edwards G A;Stilier K;Dunlop G L .[J].Acta Materialia,1998,46(11):3893. |
[10] | Anderson S J;Zandbergen H W;Jansen J et al.[J].Acta Materialia,1998,46(09):3283. |
[11] | Matsuda K;Uetani Y;Sato T et al.[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32(13):1293. |
[12] | Svenningsen G;Lein J E;Bj(o)rgum A et al.[J].Corrosion Science,2006,48(06):1528. |
[13] | Davydov V G;Siniavski V S;Ber L B et al.[J].Materials Science Forum,2000,331-337:1315. |
[14] | Martin J W.Precipitation Hardening,2nd ed[M].Oxford,United Kingdom:Butterworth-Heinemann,1998:78. |
[15] | Jones R H.Stress-Corrosion Cracking[M].Materials Park,OH:ASM International,1992:19. |
[16] | Osaki S;Kinoshita K;Naganuma D .[J].Japanese Journal of Institute of Light Metals,2003,53(04):157. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%