{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了反复折皱-压直法(repetitive corrugation and straightening,RCS)制备块体纳米结构金属的新工艺,包括反复折皱-压直法的工艺原理,微观结构特征和组织演化规律,晶粒细化机理等,并对其应用前景进行了展望.","authors":[{"authorName":"魏伟","id":"6d6bcc80-c6ed-4d3e-a226-56e1aed50392","originalAuthorName":"魏伟"},{"authorName":"陈光","id":"15dcca1f-3420-4284-a7ac-dc9478c20cbf","originalAuthorName":"陈光"}],"doi":"","fpage":"22","id":"c2a60cbf-badb-4348-8ec2-660e017fb8fb","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c8f54ada-0b73-40fa-8005-3e4f4ba89c4d","keyword":"反复折皱-压直","originalKeyword":"反复折皱-压直"},{"id":"8c9e6b8c-5066-499f-8500-168ee5a62c30","keyword":"纳米结构金属","originalKeyword":"纳米结构金属"},{"id":"961e95da-2aac-4363-9bd9-1bbaff29b509","keyword":"大塑性变形","originalKeyword":"大塑性变形"},{"id":"f605590e-ce91-4dbc-a67f-9587717d6af2","keyword":"微观结构特征","originalKeyword":"微观结构特征"}],"language":"zh","publisherId":"cldb200210008","title":"块体纳米结构金属制备新工艺","volume":"16","year":"2002"},{"abstractinfo":"细化晶粒是改善材料性能的有效手段,传统的压力加工技术(如轧制、挤压、拉拔和锻造等)可以细化晶粒(微米量级).纳米结构金属由于具有很小的晶粒尺寸(20~500 nm)和独特的缺陷结构,从而表现出优异的物理力学性能.大塑性变形(SPD)具有将铸态粗晶金属的晶粒细化到纳米量级的巨大潜力,近年来已引起人们的极大关注.介绍了4种大塑性变形制备纳米结构金属的方法、原理、变形特点及应用,分析了纳米结构金属的强度和超塑性变形特征,以及当前研究中存在的主要问题,并对大塑性变形技术的应用前景进行了展望.","authors":[{"authorName":"魏伟","id":"fa80551f-254c-4804-ab54-685d7cf49eb5","originalAuthorName":"魏伟"},{"authorName":"陈光","id":"a5573f10-f040-4238-b742-6ddd78df3217","originalAuthorName":"陈光"}],"doi":"10.3969/j.issn.0258-7076.2003.03.012","fpage":"361","id":"a0e332e2-399a-48c3-9005-1ba187a7f009","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"38cf1c03-ec17-4f07-8a2d-997bf977b8e8","keyword":"材料加工工程","originalKeyword":"材料加工工程"},{"id":"c9f879a8-c193-4704-8776-30c9f0236392","keyword":"纳米结构金属","originalKeyword":"纳米结构金属"},{"id":"affc93aa-04cc-455f-9d82-bbc289796367","keyword":"大塑性变形","originalKeyword":"大塑性变形"},{"id":"1e81900e-2c74-4cb3-8c19-1cdffe374347","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"fe84ba17-5199-4389-882c-c07ac1c5d4d2","keyword":"超塑性","originalKeyword":"超塑性"}],"language":"zh","publisherId":"xyjs200303012","title":"大塑性变形制备纳米结构金属","volume":"27","year":"2003"},{"abstractinfo":"综述了国内外近年来对纳米结构金属位错的研究,包括位错的基本特征、研究方法以及定量分析.由于晶粒尺寸的减小,全位错的形成和运动变得困难甚至不可能,纳米结构金属更容易生成不全位错.在高分辨TEM图像观察实验中发现了大量孪晶或层错,也证实了不全位错的存在.着重讨论了晶界发射不全位错的形核、增殖以及在塑性变形过程中所起的作用.研究了纳米结构金属中的位错动力学,采用分子动力学模拟和高分辨透射电镜方法从不同层面上揭示了位错的形核、增殖、运动以及相互作用等过程.最后简单介绍了位错柏氏矢量以及密度的相关定量分析,其相关参数的表征对进一步弄清纳米结构金属的塑性变形机制具有重要意义.","authors":[{"authorName":"倪海涛","id":"c4f7169b-3650-4d33-a887-cb887b536f8e","originalAuthorName":"倪海涛"},{"authorName":"张喜燕","id":"29af15fb-62ec-4bfb-8589-c244f83f244a","originalAuthorName":"张喜燕"},{"authorName":"朱玉涛","id":"d9cd75e2-15e8-47e5-8bc2-c11a85e8e743","originalAuthorName":"朱玉涛"}],"doi":"","fpage":"112","id":"f1c78e53-12ae-4baf-bab8-cf398591e3f2","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"659f548a-faa3-4e01-8abf-fbcab1594a91","keyword":"纳米结构金属","originalKeyword":"纳米结构金属"},{"id":"f191f14a-4b9e-475d-bc8e-d7b527f06618","keyword":"位错","originalKeyword":"位错"},{"id":"75b75091-0d7f-46b6-be79-af88bbd1ff4b","keyword":"位错密度","originalKeyword":"位错密度"}],"language":"zh","publisherId":"cldb201011025","title":"纳米结构金属位错的研究进展","volume":"24","year":"2010"},{"abstractinfo":"研究纳米结构锆晶粒尺寸对晶格畸变、费米能和费米速度的影响,并建立晶格畸变、费米能、费米速度与晶粒尺寸之间的关系,计算了锆的晶格畸变率、费米能和费米速度.结果表明,锆纳米化后其晶格畸变表现为膨胀,晶格畸变随着晶粒尺寸的减小而增加,费米能和费米速度随晶粒尺寸的增加而增大.","authors":[{"authorName":"于梅花","id":"9c8e41bf-1a1f-4224-85c5-dbef937576e8","originalAuthorName":"于梅花"},{"authorName":"张喜燕","id":"8e878f71-01f9-46f6-8d52-a8c468efa989","originalAuthorName":"张喜燕"},{"authorName":"朱玉涛","id":"b5118c51-e01e-47e9-8921-886f01ad21f3","originalAuthorName":"朱玉涛"},{"authorName":"吴燕玲","id":"35f0c406-ecc2-4adf-b762-07c1d0a48747","originalAuthorName":"吴燕玲"},{"authorName":"何维","id":"76d06e7b-0912-4134-9479-7071145638f3","originalAuthorName":"何维"}],"doi":"","fpage":"1269","id":"a7826b0f-dda3-4653-b750-3bfe9767ab82","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"76e0370b-57c8-4a51-8b7c-9f0874f8d1da","keyword":"纳米结构金属","originalKeyword":"纳米结构金属"},{"id":"d13e2177-3101-4629-8277-5bb9ee6045a9","keyword":"锆","originalKeyword":"锆"},{"id":"102b5b43-a7c8-4353-8b56-e8186a980682","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"b5eb3d38-a3d6-4700-a7e3-20d1eb36155d","keyword":"费米能","originalKeyword":"费米能"}],"language":"zh","publisherId":"xyjsclygc200907032","title":"纳米结构锆晶粒尺寸对费米能及费米速度的影响","volume":"38","year":"2009"},{"abstractinfo":"研究了673 K,10.3 MPa条件下纳米锆合金氧化膜中ZrO2晶粒尺寸长大规律.结果表明,在纳米结构基底上形成的ZrO2,晶粒尺寸均小于在粗晶基底上所形成的ZrO2晶粒尺寸;在纳米结构基底上形成的ZrO2晶粒长大速率小于在粗晶基底上所形成的ZrO2晶粒长大速率.组织纳米化促进了更小尺寸ZrO2的形成,影响了ZrO2晶粒长大动力学过程.","authors":[{"authorName":"张喜燕","id":"4a24a3eb-4c79-4435-99e6-38c0896c3c6d","originalAuthorName":"张喜燕"},{"authorName":"李聪","id":"7fe81c53-3204-4041-9499-3b368145ec12","originalAuthorName":"李聪"},{"authorName":"邱绍宇","id":"3d1f7113-a718-4eec-9e5c-a3a6b05c5210","originalAuthorName":"邱绍宇"},{"authorName":"石明华","id":"629e4c6c-e2ba-4ab0-8d93-f1ef9c238089","originalAuthorName":"石明华"},{"authorName":"张鹏程","id":"299e07a1-8ca3-42e5-960b-93e4a0841923","originalAuthorName":"张鹏程"},{"authorName":"韦以明","id":"71ad8ce2-8536-455b-8332-ad1f917d07f9","originalAuthorName":"韦以明"}],"doi":"","fpage":"112","id":"a9b11319-60e7-4b91-9cc4-fe9a8354295e","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"342edc73-656d-4a3c-b72c-7760509744ed","keyword":"锆合金","originalKeyword":"锆合金"},{"id":"d617c9d0-470f-4c0d-8ddf-85d1ebabf902","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"876604d8-0f29-4955-86ef-cf615ecde2b0","keyword":"纳米结构金属","originalKeyword":"纳米结构金属"},{"id":"af74af74-78d6-4531-b99f-e8717e00b508","keyword":"晶体长大","originalKeyword":"晶体长大"},{"id":"037ac31d-2479-4c4d-a655-958a99ac5b54","keyword":"X射线","originalKeyword":"X射线"}],"language":"zh","publisherId":"xyjsclygc200801027","title":"纳米组织锆合金氧化过程中ZrO2晶粒生长特性","volume":"37","year":"2008"},{"abstractinfo":"研究了纳米结构锆合金氧化过程中ZrO2晶格常数的变化.结果表明,氧化过程中,纳米组织合金基底上形成的ZrO2晶格常数变化与普通粗晶基底上形成的ZrO2晶格常数变化有显著不同.纳米组织合金基底上形成的t-ZrO2,晶胞体积在氧化过程中不断缩小,由t-ZrO2转变形成的m-ZrO2晶胞体积也在不断减小;而普通粗晶基底上形成的t-ZrO2晶胞体积减小时,转变形成的m-ZrO2晶胞体积却在不断膨胀.对此并进行了分析讨论.","authors":[{"authorName":"张喜燕","id":"5b9a7528-55dd-4cf1-a797-f010fb1279a0","originalAuthorName":"张喜燕"},{"authorName":"朱玉涛","id":"3c800023-6a2a-41db-81b4-e41e3defdc73","originalAuthorName":"朱玉涛"},{"authorName":"李聪","id":"8f715913-a7a1-4956-9783-28c5ba298b16","originalAuthorName":"李聪"},{"authorName":"于梅花","id":"523346ca-f6c9-4e75-b02f-04ae36bf02b5","originalAuthorName":"于梅花"},{"authorName":"张强","id":"55ec6935-c69d-4f3c-8224-ae2df33fc5ab","originalAuthorName":"张强"},{"authorName":"邱绍宇","id":"1d7c2a29-5c37-4608-ae54-8f840cd9c76b","originalAuthorName":"邱绍宇"},{"authorName":"石明华","id":"c43d09c6-50b4-4eb4-a63e-3d2c5bfedeaa","originalAuthorName":"石明华"},{"authorName":"李中奎","id":"cba2ff6e-e0d8-4a99-b195-c1a1be1e81d7","originalAuthorName":"李中奎"},{"authorName":"刘庆","id":"d2d2ee54-cb52-4b56-b03e-fb185a00906c","originalAuthorName":"刘庆"},{"authorName":"栾伯峰","id":"2a407b91-b20f-45e5-beb3-8a1419ca9304","originalAuthorName":"栾伯峰"},{"authorName":"黄光洁","id":"12e82eb5-d98c-49bf-a5d0-0de8cd01f633","originalAuthorName":"黄光洁"},{"authorName":"韦以明","id":"c5e220d5-f606-4556-9998-4c93d5a43b49","originalAuthorName":"韦以明"}],"doi":"","fpage":"1149","id":"3a635612-825b-4f76-86c5-b7ffe117d97a","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"aa218a80-29d8-42d6-84c5-6aa222e3e5a4","keyword":"锆合金","originalKeyword":"锆合金"},{"id":"51dfa961-e8a3-4f2f-94aa-8096f6f7a321","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"3f882a9c-4e39-4811-8949-71e751fcf68b","keyword":"纳米结构金属","originalKeyword":"纳米结构金属"},{"id":"1cf34807-c718-4cd3-859d-a567c36e080f","keyword":"晶格常数","originalKeyword":"晶格常数"},{"id":"10d446b5-9a69-4945-a0bf-8082c967f636","keyword":"X射线衍射","originalKeyword":"X射线衍射"}],"language":"zh","publisherId":"xyjsclygc200807005","title":"纳米化组织处理对锆合金氧化过程中ZrO2晶格常数变化的影响","volume":"37","year":"2008"},{"abstractinfo":"纳米结构金属多孔材料(以下简称金属纳米多孔材料)是近年来纳米技术及多孔材料科学领域引人注目的研究对象.本文综述了近年来金属纳米多孔材料的制备方法(粉末烧结法、脱合金法、胶晶模板法、斜入射沉积法等)、表征技术、应用现状以及最新的研究成果.指出了金属纳米多孔材料研究进程中存在的主要问题、发展前景及今后的研究方向.","authors":[{"authorName":"张文彦","id":"667c7c94-d498-4cde-a763-d7b61d9f0f75","originalAuthorName":"张文彦"},{"authorName":"奚正平","id":"34484fc2-4e15-4472-8990-c090d68df18c","originalAuthorName":"奚正平"},{"authorName":"方明","id":"9791bb71-c3ea-46b1-ae0e-ff9cd5c63abd","originalAuthorName":"方明"},{"authorName":"李亚宁","id":"65c23e8b-dfed-4be9-ad8c-823b1ecde400","originalAuthorName":"李亚宁"},{"authorName":"李广忠","id":"a8a187e6-8edb-4857-878b-90b7f36c09ec","originalAuthorName":"李广忠"},{"authorName":"张龙","id":"bd95e47f-1758-4ea9-8737-0aee89f63208","originalAuthorName":"张龙"}],"doi":"","fpage":"1129","id":"17af6918-52ea-46a7-9c5e-52483b1e2c11","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"50fa3933-8363-49be-bb47-1b4bdd7f3ff9","keyword":"纳米","originalKeyword":"纳米"},{"id":"7c057411-c0e2-4745-b8b5-3c331f6ccc06","keyword":"多孔材料","originalKeyword":"多孔材料"},{"id":"9ed754cc-0836-4f9e-aa49-643bced13d51","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"d8a72207-5d31-4f2b-942d-a8733430f813","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"xyjsclygc200807001","title":"纳米结构金属多孔材料研究进展","volume":"37","year":"2008"},{"abstractinfo":"在室温条件下对纳米金属镍进行了不同程度的冷轧变形,利用X射线衍射分析和高分辨透射电镜的观察对纳米金属镍的微观结构演变以及塑性变形机制进行了研究.结果表明:形变量ε< 20%时,晶粒旋转为主要的变形方式;当20%<ε<30%时,位错活动与晶粒旋转共同协调变形;ε>30%时,晶界发射的不全位错,形成变形孪晶与层错,主导变形.","authors":[{"authorName":"贾冲","id":"9466d984-671b-46e2-9dee-ba327ff77524","originalAuthorName":"贾冲"},{"authorName":"张喜燕","id":"62a991e8-a033-4661-a48c-6f9b71f3969a","originalAuthorName":"张喜燕"},{"authorName":"周世杰","id":"20f2cdfb-8143-4f2b-9b7c-7e402bc0ceeb","originalAuthorName":"周世杰"}],"doi":"","fpage":"34","id":"56cab0de-fdfd-469a-8c75-f9cf4b259124","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"15d9be7a-b5d5-474e-a0a4-14379a4d5ec8","keyword":"镍","originalKeyword":"镍"},{"id":"83b08dda-9179-4e56-9843-b1e2fca26a8b","keyword":"纳米晶体","originalKeyword":"纳米晶体"},{"id":"4b43dded-ea98-46a2-85df-bd4485209b38","keyword":"晶粒旋转","originalKeyword":"晶粒旋转"},{"id":"aa19d690-267e-468c-83dd-1c9d48ada002","keyword":"位错","originalKeyword":"位错"},{"id":"78ccead9-4f45-42f7-9a44-809f9ae9f70a","keyword":"孪晶","originalKeyword":"孪晶"}],"language":"zh","publisherId":"jsrclxb201003008","title":"纳米金属镍的冷轧变形与微结构","volume":"31","year":"2010"},{"abstractinfo":"采用电化学沉积方法成功地制备了高度有序的镍纳米管/线阵列结构,并用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对产物的微观形貌和化学结构进行了表征和分析.测试结果显示,镍纳米结构阵列规整,镍纳米管壁具有多晶体结构;X射线衍射图谱表明,镍纳米管壁具有较高的结晶度.研究了沉积时间对镍纳米结构的影响.","authors":[{"authorName":"李晓茹","id":"24e6b200-e393-4c46-9b29-37e0aa1f3a85","originalAuthorName":"李晓茹"},{"authorName":"宋国君","id":"45ae7422-ac25-4692-9fd3-161c865dd66e","originalAuthorName":"宋国君"},{"authorName":"于永明","id":"96e93a20-7915-4fc3-8b1d-479d138b970f","originalAuthorName":"于永明"},{"authorName":"彭智","id":"2a1863c7-5dfd-4bf4-8c6a-3540a2cf5b28","originalAuthorName":"彭智"},{"authorName":"杨超","id":"38f43cd5-18c7-4469-adfe-10869b6fb919","originalAuthorName":"杨超"},{"authorName":"李培栋","id":"6690f183-1207-4cef-84c6-943fd2ae244c","originalAuthorName":"李培栋"}],"doi":"","fpage":"95","id":"b9b3dab7-203b-4312-a784-38fba0cb6200","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"2e339ae8-6a3b-44c4-9383-f040d3ee2a48","keyword":"氧化铝模板","originalKeyword":"氧化铝模板"},{"id":"7aedb913-8634-4d56-8b2f-b83c39a04fb7","keyword":"纳米管","originalKeyword":"纳米管"},{"id":"a1dbf195-af20-4739-aec7-692c1e435fda","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"51ca23d0-d077-4883-9c5d-76f25c844ab9","keyword":"电化学沉积","originalKeyword":"电化学沉积"}],"language":"zh","publisherId":"cldb201006029","title":"磁性金属纳米结构的制备与表征","volume":"24","year":"2010"},{"abstractinfo":"为研究液态Cu的短程有序结构,建立了液态微观结构纳米晶粒模型,从晶体X射线衍射学的角度出发,通过对固态Cu衍射峰的宽化计算出了液态X射线衍射强度曲线.计算出的强度曲线与实验获得的液态Cu的X射线衍射强度曲线具有较好的一致性,这证明纳米晶粒模型的正确性,同时也证明了Cu的液态短程有序结构与其固态晶体结构存在着密切相关性,即Cu的液态短程序结构为fcc.","authors":[{"authorName":"田学雷","id":"c364200d-0c52-45e9-9f9a-c78174029dec","originalAuthorName":"田学雷"},{"authorName":"沈军","id":"a068791a-cc18-4a6d-9d7f-d726478be0eb","originalAuthorName":"沈军"},{"authorName":"孙剑飞","id":"750cf316-79fd-4c5d-aea5-06b039a345cc","originalAuthorName":"孙剑飞"},{"authorName":"李庆春","id":"ea128395-d7ae-447f-adcd-1e1d5333cb5c","originalAuthorName":"李庆春"}],"doi":"10.3969/j.issn.1005-0299.2004.01.005","fpage":"15","id":"9da6c871-dd62-447a-a7b7-271bb8b154f0","issue":"1","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"c12bd26d-f131-48bb-8cfc-8e5cf472dbc8","keyword":"液态金属","originalKeyword":"液态金属"},{"id":"80d13e4c-acf1-4da2-a12e-a5ce61285cc1","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"893d2ce0-5da7-4a7a-88bc-95408f107a0d","keyword":"模型","originalKeyword":"模型"},{"id":"0171b577-21d5-422a-ae89-333e851ff6e6","keyword":"短程有序","originalKeyword":"短程有序"}],"language":"zh","publisherId":"clkxygy200401005","title":"金属Cu液态结构纳米晶粒模型","volume":"12","year":"2004"}],"totalpage":8549,"totalrecord":85489}