{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":2,"startPagecode":1},"records":[{"abstractinfo":"采用纯 Al 片表面浸 Zn 后再电镀厚 Cu 层的方法制备 Cu/Al 层状复合材料。在473~673 K 温度范围内对该复合材料进行退火,研究退火过程中 Cu/Al 界面扩散与反应、界面金属间化合物(IMCs)层的长大动力学以及Cu/Al 层状复合材料电阻率。结果表明,经过473 K、360 h 的退火处理,未观察到 Cu?Al IMCs 层,显示 Zn 中间层能有效抑制 Cu/Al 界面扩散。可是,当复合材料经573 K 及以上温度退火时,Zn 层中的 Zn 原子主要向 Cu 中扩散,从 Al 侧到 Cu 侧形成 CuAl2/CuAl/Cu9Al4三层结构的反应产物。IMC 层遵循扩散控制的生长动力学,Cu/Al复合材料的电阻率随退火温度及时间的增加而增大。","authors":[{"authorName":"张健","id":"c8899947-900a-477f-8cdd-c30040df7153","originalAuthorName":"张健"},{"authorName":"王斌昊","id":"1b008c05-5faa-4d8c-86c8-c60fce47b361","originalAuthorName":"王斌昊"},{"authorName":"陈国宏","id":"35a50d79-4d91-46a1-97e5-d46d71b91b12","originalAuthorName":"陈国宏"},{"authorName":"王若民","id":"52191edb-4b96-43f5-a945-3bc4b82ea090","originalAuthorName":"王若民"},{"authorName":"春辉","id":"ef7757ec-b363-43ba-97aa-4ab35f004898","originalAuthorName":"缪春辉"},{"authorName":"郑治祥","id":"805a001c-4919-4131-bd03-2dd491a51d1b","originalAuthorName":"郑治祥"},{"authorName":"汤文明","id":"7f04e899-bc66-4271-83ef-7c091ec0d9b0","originalAuthorName":"汤文明"}],"doi":"10.1016/S1003-6326(16)64462-X","fpage":"3283","id":"772020d5-39e9-476d-b712-4eb42f863093","issue":"12","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"68c26a62-2a42-4e60-893e-96c3a6b506a3","keyword":"Cu-Al 金属间化合物","originalKeyword":"Cu-Al 金属间化合物"},{"id":"ddf9bd8f-b82a-4cf9-b4b9-cea43d1f3109","keyword":"层状复合材料","originalKeyword":"层状复合材料"},{"id":"b6c05a84-26fb-4897-8d12-15cbced60357","keyword":"电镀","originalKeyword":"电镀"},{"id":"1a87ddaf-c924-4639-ab1b-8996ae542b1a","keyword":"界面反应","originalKeyword":"界面反应"},{"id":"35bfa36e-def3-47fc-81f2-3aac0ec9fd95","keyword":"生长动力学","originalKeyword":"生长动力学"},{"id":"7fb9f23e-b53e-4523-9952-c134588ab332","keyword":"电阻率","originalKeyword":"电阻率"}],"language":"zh","publisherId":"zgysjsxb-e201612025","title":"Cu-Al 金属间化合物的形成与生长及其对电镀 Cu/Al 层状复合材料电性能的影响","volume":"26","year":"2016"},{"abstractinfo":"本文研究了包括铝质瓷及硅质瓷质的4种支柱瓷绝缘子的成分、物相、组织结构及性能,采用抗热冲击试验及断裂韧性(KC)测试,评价瓷绝缘子的可靠性.结果表明:A12O3、SiO2含量及氧化铝、残余石英颗粒与基体的界面结合状态,气孔的形态与分布等对瓷绝缘子的强度、KIc等力学性能起着至关重要的作用.除力学性能外,铝质瓷绝缘子的抗热冲击性能主要受其热膨胀系数及弹性模量影响;而硅质瓷绝缘子的抗热冲击性能则主要受其热导率影响.","authors":[{"authorName":"孟将","id":"658323a1-b66a-4b08-bae8-773c16be2035","originalAuthorName":"孟将"},{"authorName":"陈国宏","id":"0b0a9148-eda0-4722-b65c-81fe569076f8","originalAuthorName":"陈国宏"},{"authorName":"王若民","id":"c735acc4-bd21-44d9-b3d3-3f3588682d84","originalAuthorName":"王若民"},{"authorName":"春辉","id":"2b540470-01b7-451f-9899-d79891214092","originalAuthorName":"缪春辉"},{"authorName":"汤文明","id":"749cf7a5-2375-4ae5-9404-b51030917e77","originalAuthorName":"汤文明"}],"doi":"","fpage":"2001","id":"0e1a8097-fb1e-453c-bdbc-3338615d729e","issue":"7","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e8753a43-cf93-43e5-a7bf-341607813be4","keyword":"支柱瓷绝缘子","originalKeyword":"支柱瓷绝缘子"},{"id":"c248bd4a-6eb4-431c-b973-2fafe4915c8d","keyword":"组织结构","originalKeyword":"组织结构"},{"id":"8c310794-7762-42e6-b65d-6496e4c809ed","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"d7e0686f-39b3-412b-9f6c-c5817b798c73","keyword":"抗热冲击性","originalKeyword":"抗热冲击性"},{"id":"63c115e4-a7bb-443f-9178-a5694c4e3d19","keyword":"可靠性","originalKeyword":"可靠性"}],"language":"zh","publisherId":"gsytb201507047","title":"支柱瓷绝缘子的组织结构及其可靠性","volume":"34","year":"2015"},{"abstractinfo":"二次浸Zn是Al材电镀的前处理工艺.Al材碱蚀不当,将对浸Zn乃至后续的电镀过程产生十分不利的影响.研究了在不同浓度NaOH 碱蚀液中碱蚀粗化后的纯Al基材及随后二次浸Zn层的表面形貌,并考察了Al材表面电镀Cu层的质量.结果表明,当碱蚀液浓度20 g/L,浸渍时间1 min时,Al基材表面形成大而深的腐蚀坑,Al基材晶界处腐蚀尤其严重,浸 Zn 层难以将这些腐蚀坑覆盖.而当碱蚀液浓度5 g/L 时,在相同的浸渍时间下,Al基材表面粗糙度适中,无大而深的腐蚀坑,浸Zn层覆盖率高达95%以上,其表面电镀 Cu 层的质量良好.","authors":[{"authorName":"张健","id":"0186e0f1-f24d-4868-93ba-21f08da77654","originalAuthorName":"张健"},{"authorName":"陈国宏","id":"6077a588-3022-4540-9943-4fe4a61dac88","originalAuthorName":"陈国宏"},{"authorName":"王若民","id":"c9f7ba40-d727-4563-9cba-6c936970bad4","originalAuthorName":"王若民"},{"authorName":"春辉","id":"d2e6dd1d-358e-4bd9-b097-0720bf2476a2","originalAuthorName":"缪春辉"},{"authorName":"郑治祥","id":"98ede617-b959-45f5-b4fe-2ff7f5d2dc50","originalAuthorName":"郑治祥"},{"authorName":"汤文明","id":"aa2050d4-3274-41d6-9635-57e8dcee81bc","originalAuthorName":"汤文明"}],"doi":"10.3969/j.issn.1001-9731.2016.05.038","fpage":"5201","id":"27365eaa-6372-4ecc-99ac-ab5e9f7084bd","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"859daab2-a63f-4566-98e0-e20028b2e0ce","keyword":"纯铝","originalKeyword":"纯铝"},{"id":"191926b9-2565-4628-9b98-60c4a3c89b5c","keyword":"碱蚀液","originalKeyword":"碱蚀液"},{"id":"6e568894-4d96-4679-8d3d-ece1a87693b0","keyword":"二次浸锌","originalKeyword":"二次浸锌"},{"id":"d8b92319-7a8b-45a0-9bd9-0e915a8fd178","keyword":"腐蚀机理","originalKeyword":"腐蚀机理"},{"id":"307f8686-49ce-4a5f-894e-71313b931c32","keyword":"表面形貌","originalKeyword":"表面形貌"}],"language":"zh","publisherId":"gncl201605038","title":"碱蚀液浓度对纯铝表面二次浸锌的影响?","volume":"47","year":"2016"},{"abstractinfo":"化学镀Ni-P合金中间层可提高Al材表面Cu镀覆性能.采用化学镀工艺,在Al表面沉积均匀连续的Ni-P合金层,再电镀Cu,形成 Al/Ni-P/Cu 复合材料.研究化学镀 Ni-P 合金层的表面形貌,成分及其成膜机理,以及Al/Ni-P/Cu复合材料的结构与电性能.结果表明,Al材经碱蚀前处理后,在其表面形成腐蚀坑或凸起,Ni-P合金在此位置优先沉积,逐渐成膜.碱性镀5 min,酸性镀25 min 后,在 Al 材表面形成厚约5μm 均匀致密的Ni-P合金镀层,再在其表面电镀140μm 厚 Cu 层制备的 Al/Cu 复合材料的电阻率为2.92×10-8Ω.m,经过150℃,360 h热处理后,未发生Al、Cu相互扩散,复合材料的电阻率为3.04×10-8Ω.m,结构与性能十分稳定.","authors":[{"authorName":"陈国宏","id":"9dae1ab1-aee2-4392-a9dd-2e6560eb20b7","originalAuthorName":"陈国宏"},{"authorName":"张健","id":"8df92513-c155-4f67-98f7-e3490cf9883f","originalAuthorName":"张健"},{"authorName":"王若民","id":"24a5aa08-5263-4398-9ad4-8c0ea76f15b8","originalAuthorName":"王若民"},{"authorName":"春辉","id":"fb8bb69a-3452-4b24-b111-0d8fa5c29ac6","originalAuthorName":"缪春辉"},{"authorName":"郑治祥","id":"48abaa95-bc09-44cf-98f3-549122854afe","originalAuthorName":"郑治祥"},{"authorName":"汤文明","id":"5a5d2ba1-cc3b-4070-a06c-6873250b42b2","originalAuthorName":"汤文明"}],"doi":"10.3969/j.issn.1001-9731.2016.增刊(Ⅰ).002","fpage":"7","id":"263ce38c-d2bb-4dc9-929c-7f16d2ba7c9b","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"effac65e-9a9b-4b80-8cc5-394dc3ad8d58","keyword":"Ni-P合金","originalKeyword":"Ni-P合金"},{"id":"50d6b03c-7f13-4c47-bc40-821f8375c1ba","keyword":"层状复合材料","originalKeyword":"层状复合材料"},{"id":"163a8a85-cd15-4e9d-bef6-bf8777a8c30a","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"4485c057-1337-4c5d-aa0a-c534155bda53","keyword":"电镀","originalKeyword":"电镀"},{"id":"91c14d12-c752-4182-8f76-ce2b892232ea","keyword":"电阻率","originalKeyword":"电阻率"}],"language":"zh","publisherId":"gncl2016z1002","title":"Al表面化学镀Ni-P合金及Al/Ni-P/Cu复合材料电性能的研究?","volume":"47","year":"2016"},{"abstractinfo":"在室温、10 Pa氩气环境气体中,采用脉冲激光烧蚀技术,在以烧蚀点为圆心、半径为2 cm的玻璃弧形支架的不同角度处放置衬底,沉积了纳米Si晶薄膜.通过扫描电子显微镜、拉曼散射仪对制备样品的形貌和特性进行分析.结果表明:纳米Si晶粒以羽辉轴线为轴呈对称分布,在轴线处平均尺寸最大,随着衬底同轴线夹角的增加,晶粒尺寸逐渐减小.结合朗尔探针对空间不同位置羽辉中Si离子密度和热运动温度分布的诊断情况,从晶粒生长过程的角度对其尺寸随空间位置变化的结果进行了研究,得到了晶粒尺寸正比于烧蚀粒子密度和热运动温度的结论.","authors":[{"authorName":"邓泽超","id":"3dafd1fb-23d2-4465-91b9-878fe057c0ba","originalAuthorName":"邓泽超"},{"authorName":"刘海燕","id":"05ecf424-9ead-4876-915b-ae4b0d87d5e3","originalAuthorName":"刘海燕"},{"authorName":"张晓龙","id":"dde5b4a9-ffc9-4052-9058-1ccde0b7849a","originalAuthorName":"张晓龙"},{"authorName":"褚立志","id":"e678b867-5500-4aeb-b9cb-605ff8321519","originalAuthorName":"褚立志"},{"authorName":"丁学成","id":"c263464b-1a6d-4ebf-a6cf-d3509cbc8e23","originalAuthorName":"丁学成"},{"authorName":"秦爱丽","id":"76f9037d-f4c9-497c-901a-f6cfc263d926","originalAuthorName":"秦爱丽"},{"authorName":"王英龙","id":"e7e36ef3-be6b-4419-93bf-4cd9f0b9705d","originalAuthorName":"王英龙"}],"doi":"","fpage":"2686","id":"cdfb4d96-f185-4990-bf00-45678b95da5c","issue":"12","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e70d7677-865e-47dc-861d-d512a777832c","keyword":"纳米Si晶薄膜","originalKeyword":"纳米Si晶薄膜"},{"id":"baa92654-0098-48b2-bcb3-772c64e75139","keyword":"脉冲激光烧蚀","originalKeyword":"脉冲激光烧蚀"},{"id":"17ad4e44-dfd4-4690-84c4-7dd49b82cc1d","keyword":"空间分布","originalKeyword":"空间分布"},{"id":"6d20000a-1f91-455f-a488-74de9729fe1d","keyword":"朗尔探针","originalKeyword":"朗缪尔探针"}],"language":"zh","publisherId":"rgjtxb98201312037","title":"基于朗尔探针的硅离子空间分布特性及纳米晶粒生长过程研究","volume":"42","year":"2013"},{"abstractinfo":"用朗尔单探针技术对离子渗金属中的等离子体参数进行了诊断,讨论工艺参数对等离子体参数的影响.结果表明,随着工件阴极电压、源极电压和气压的增加,等离子体密度增大.利用等离子体参数结合放电特征对工艺参数进行了优化限定.讨论了等离子体参数对渗层成分的影响.","authors":[{"authorName":"李成明","id":"8b13bac8-85e8-4deb-a301-5f03d5f9c53f","originalAuthorName":"李成明"},{"authorName":"徐重","id":"79fa7c0c-200d-40d4-8e89-0d9d66751cf3","originalAuthorName":"徐重"},{"authorName":"田林海","id":"6355a5a5-9a27-4941-8499-37fd57e7afe6","originalAuthorName":"田林海"},{"authorName":"吕反修","id":"78deb12a-d466-4a7a-aad2-c358edb756c9","originalAuthorName":"吕反修"},{"authorName":"唐伟忠","id":"f99afdb4-0db6-4c21-83af-5ac6f9ecd4b7","originalAuthorName":"唐伟忠"}],"doi":"","fpage":"311","id":"dc1e203a-be41-4ecd-8f9f-d4b90cb2f76d","issue":"2","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"67bff14b-0dd3-46e0-93f7-988636afa492","keyword":"等离子体参数","originalKeyword":"等离子体参数"},{"id":"2558426a-58e5-4009-bf0a-645d2008fff9","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"f2444f05-dac2-4e5d-ba17-3c09df8e9aad","keyword":"表面成分","originalKeyword":"表面成分"}],"language":"zh","publisherId":"zgysjsxb200302006","title":"离子渗金属中等离子体参数与工艺参数的相关性","volume":"13","year":"2003"},{"abstractinfo":"测定了龙南足洞原地浸析多年后的尾矿中不同空间位置上的稀土和铵残留量,以及尾矿中的粘土矿物对稀土和铵的吸附等温线.结果表明,粘土矿物对稀土的吸附符合朗格尔等温线方程,对低浓度稀土有强吸附能力;而对铵的吸附等温线呈直线关系,不符合朗格尔等温线方程.尾矿粘土中铵的纯水浸出实验证明,尾矿中的铵可被水浸出而流失.用粘土矿物对稀土和铵的吸附特征差别和矿层内部的渗透特征差别解释了注液区域矿层内部从全风化层到半风化层方向铵和稀土残留量的上升趋势.因此,尾矿中铵和稀土含量的分布可以直接反映原地浸出效果的好坏以及铵的流失情况,用于讨论离子吸附型稀土矿床的内部结构与渗流特征.","authors":[{"authorName":"侯潇","id":"301237bf-a17b-496b-a22a-b1a3ac03c53b","originalAuthorName":"侯潇"},{"authorName":"许秋华","id":"d870d97a-d511-4c9f-98a5-56f411fdd1f4","originalAuthorName":"许秋华"},{"authorName":"孙圆圆","id":"cd32976f-eb40-4226-bb0e-4be82ad4e456","originalAuthorName":"孙圆圆"},{"authorName":"王悦","id":"49773908-2b97-4127-bedf-86bdc739945b","originalAuthorName":"王悦"},{"authorName":"李静","id":"25df8afb-9a42-4467-91d9-4056e4044168","originalAuthorName":"李静"},{"authorName":"周新木","id":"7f5392f5-6cde-4463-98ea-2afb1b4a92f0","originalAuthorName":"周新木"},{"authorName":"李永绣","id":"0810b88b-8c71-42dc-b5e0-bcfd8cac6ab6","originalAuthorName":"李永绣"}],"doi":"10.16533/J.CNKI.15-1099/TF.201604001","fpage":"1","id":"cbee8c49-e84c-4faf-8cfa-62e051824c45","issue":"4","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"10ceb827-b256-4165-83a3-5171db894443","keyword":"原地浸矿","originalKeyword":"原地浸矿"},{"id":"a02f78f2-decc-4106-9235-df75f198b7e4","keyword":"离子吸附型稀土","originalKeyword":"离子吸附型稀土"},{"id":"18d76862-1a70-48a9-8572-6b2b681cc792","keyword":"尾矿","originalKeyword":"尾矿"},{"id":"cae76b82-dc5c-40ce-b717-29a037cde90e","keyword":"渗流特征","originalKeyword":"渗流特征"},{"id":"dbd0899a-f3fe-47a1-8225-feb48b4c256b","keyword":"铵残留量","originalKeyword":"铵残留量"}],"language":"zh","publisherId":"xitu201604001","title":"离子吸附型稀土原地浸析尾矿中稀土和铵的残留量分布及其意义","volume":"37","year":"2016"},{"abstractinfo":"运用总有机碳/总氮分析技术,研究了在25℃下,线状和梳状聚羧酸添加剂的吸附容量(qt)与吸附时间(t)的关系.通过对其吸附动力学和吸附模型的分析,探讨了它们的吸附行为.结果表明:线状和梳状聚羧酸添加剂的吸附容量随吸附的进行而增加,10 min后趋于稳定,其吸附过程分别与拉格尔格伦(Lagergren)伪二级动力学方程和朗尔(Langmuir)吸附等温方程相吻合.线状MA-AA-MAS聚羧酸陶瓷添加剂饱和吸附容量(qsa)可达18.52 mg/g.","authors":[{"authorName":"陈宝璠","id":"cdebaf42-bf2c-4e92-a4db-a222782a9656","originalAuthorName":"陈宝璠"}],"doi":"","fpage":"2857","id":"1ade5281-774d-4dfc-b464-7e1c2d29d097","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"dc005033-5f22-4dac-a30d-8346a130f33b","keyword":"线状MA-AA-MAS聚羧酸","originalKeyword":"线状MA-AA-MAS聚羧酸"},{"id":"44292217-1499-46ec-9eb4-a6f9d6bd261d","keyword":"陶瓷添加剂","originalKeyword":"陶瓷添加剂"},{"id":"d647fb2a-78e1-4e17-af47-67ff1d970e5e","keyword":"吸附行为","originalKeyword":"吸附行为"}],"language":"zh","publisherId":"gsytb201411017","title":"线状MA-AA-MAS聚羧酸陶瓷添加剂的吸附行为","volume":"33","year":"2014"},{"abstractinfo":"用失重法和电化学方法研究了正丁胺、二乙胺、乌洛托品在1.0 mol/L HCl中对铝的缓蚀作用,并对其机理进行了探讨。研究结果表明:起初,3种化合物对铝均具有缓蚀作用,缓蚀效果:乌洛托品>二乙胺>正丁胺,随着时间的延长,缓蚀效率逐渐降低;3种化合物均为吸附型缓蚀剂,对铝腐蚀的阴极过程和阳极过程都有一定的抑制作用,其吸附符合兰格尔等温吸附方程。","authors":[{"authorName":"帅长庚","id":"e33b8f98-995d-46ac-8722-1ff78b3aa267","originalAuthorName":"帅长庚"},{"authorName":"邓淑珍","id":"00ca2b85-015b-41f9-a338-7ca1540baf99","originalAuthorName":"邓淑珍"},{"authorName":"宋玉苏","id":"571f0cb0-107e-4be0-99a3-5ce619e3401d","originalAuthorName":"宋玉苏"},{"authorName":"银继伟","id":"b0968c26-8a16-46a2-8f69-ea523aae22ef","originalAuthorName":"银继伟"}],"doi":"10.3969/j.issn.1001-1560.2001.04.005","fpage":"10","id":"1f06e798-3e52-4d8d-98bf-140e01be3f48","issue":"4","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"08df8032-1a32-49e8-8012-1f22580c1d39","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"b05a5667-4eff-4673-b74a-9133cdaef277","keyword":"缓蚀作用","originalKeyword":"缓蚀作用"},{"id":"88e8f88b-9bcd-42a5-a693-bff01f4dbe60","keyword":"脂肪胺","originalKeyword":"脂肪胺"},{"id":"fde58747-e28f-46aa-8e27-c7dfb3611889","keyword":"铝","originalKeyword":"铝"}],"language":"zh","publisherId":"clbh200104005","title":"盐酸介质中脂肪胺类化合物对铝材的缓蚀作用","volume":"34","year":"2001"},{"abstractinfo":"基于用FT-IR表征H2与硝基苯在催化剂(Cu)CeO2上的吸附和反应行为,对硝基苯加氢反应进行了研究. 结果表明,氢在催化剂表面的吸附主要为解离吸附,硝基苯的吸附也主要为化学吸附;两种吸附物种在催化剂上进行表面反应生成易脱附的苯胺,避免了产物与反应物间的竞争吸附,有利于反应物完全转化. 在(Cu)CeO2催化剂上,硝基苯加氢反应机理为朗格尔-欣谢伍德型,即表面反应为控制步骤.","authors":[{"authorName":"张全信","id":"9b4bb5b8-42ae-4675-ae79-a6e3b8610794","originalAuthorName":"张全信"},{"authorName":"刘希尧","id":"400df089-28a6-4b36-8dbf-9d05ed57849b","originalAuthorName":"刘希尧"},{"authorName":"雷鸣","id":"99fb3cd6-1713-48e5-b611-19568a3caf27","originalAuthorName":"雷鸣"}],"doi":"","fpage":"400","id":"3bd19df6-7113-428a-b770-44faba646fb6","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"520cc756-f159-48e0-9c72-bf6de27670de","keyword":"铜","originalKeyword":"铜"},{"id":"5168c661-352f-4146-9f4e-b8522293bdca","keyword":"铈","originalKeyword":"铈"},{"id":"7ce5320f-281d-44f4-94e3-962ea2d1d6f5","keyword":"复合氧化物","originalKeyword":"复合氧化物"},{"id":"c81f3603-f7f2-40b2-a04a-31558150e3a2","keyword":"吸附态","originalKeyword":"吸附态"},{"id":"cd7a83eb-5953-4cc8-9d80-542047d2763e","keyword":"硝基苯","originalKeyword":"硝基苯"},{"id":"3858cf97-4288-423e-9639-bea16f6a0818","keyword":"加氢","originalKeyword":"加氢"},{"id":"66782d8d-4253-4571-b7f5-cf5ca87e7ffc","keyword":"苯胺","originalKeyword":"苯胺"}],"language":"zh","publisherId":"cuihuaxb200205004","title":"复合氧化物催化剂(Cu)CeO2上硝基苯加氢反应的研究","volume":"23","year":"2002"}],"totalpage":2,"totalrecord":17}