欢迎登录材料期刊网

材料期刊网

高级检索

在Gleeble-1500D热模拟机上,采用双道次热压缩试验研究Mn18Cr18N护环钢高温变形后不同停留时间内的静态软化行为,分析热变形温度、应变速率、变形程度以及初始奥氏体晶粒对静态再结晶行为的影响.通过应力补偿法计算静态再结晶软化率,并结合金相组织作了修正.建立其静态再结晶动力学模型,获得静态再结晶激活能249.3 kJ/mol.研究表明:Mn18Cr18N钢静态再结晶软化曲线呈“S”形,符合Avrami方程.静态再结晶体积分数随着停留时间延长而增加,热变形温度越高,静态再结晶分数越大,而在较低温度和较小变形程度时,孕育时间较长,主要发生静态回复,将静态再结晶动力学模型的预测结果与实测值进行比较,二者吻合较好,为护环钢后续热镦粗工艺模拟提供更为详尽的模型.

The static recrystallization softening behavior by two?pass compression test of Mn18Cr18N retaining ring steel were investigated on a Gleeble 1500D thermo?simulation machine. Effect of deformation temperature, strain rate, deformation degree and initial austenite grain size on the static recrystallization microstructure was analyzed. The softening fraction of static recrystallization was determined using the 2% stress offset method and it was modified with the metallographical observation. Then static recrystallization kinetic model was established and the activation energy for static recrystallization is determined as 249. 3 kJ/mol. The results show that the shape of static recrystallization softening curves of Mn18Cr18N steel is sigmoidal and obeys the Avrami law. The volume fraction of static recrystallization increases with the longer holding time, and the higher the hot deformation temperature is, the higher the volume fraction of static recrystallization also becomes. At the lower temperature and smaller deformation degree, the incubation time is longer and static recovery occurs. There is a good agreement between the predicted value and experimental results, which provides a reliable model of hot upsetting simulation for retaining ring steel.

参考文献

[1] H.Q.Chen,J.S.Liu,H.G.Guo.RESEARCH ON HOT FORMING PROCESS OF A RETAINING RING OF HIGH-NITROGEN STEEL[J].金属学报(英文版),2004(05):767-770.
[2] HE W W;LIU J S;CHEN H Q et al.Simulation and analysis on microstructure evolution of large generator retaining ring during multi-fire forging[J].Advanced Material Research,2010,97-101:176-181.
[3] QUAN G Z;MAO A;LUO G C et al.Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress-strain datadium[J].Materials and Design,2013,52:98-107.
[4] RAO K P;PRASAD Y K D V;HAWBOLT E B.Study of fractional softening in multi-stage hot deformation[J].Journal of Materials Processing Technology,1998(77):166-171.
[5] 肖翔,刘国权,胡本芙,万迪,陈少静.12Cr3WV低活性F/M钢的高温热变形行为[J].材料科学与工艺,2013(05):57-64.
[6] XIE Zhi-xiong,GAO Hai-yan,WANG Jun,YU Yan,FANG Yuan,SUN Bao-de.Static Recrystallization Behavior of Twin Roll Cast Low-Carbon Steel Strip[J].钢铁研究学报(英文版),2011(02):45-51.
[7] 宁小智,王立民,刘正东,杨钢,张家涛.403Nb叶片钢高温热压缩静态再结晶研究[J].钢铁,2009(02):69-71.
[8] LAN Liang-yun,QIU Chun-lin,ZHAO De-wen,GAO Xiu-hua,DU Lin-xiu.Dynamic and Static Recrystallization Behavior of Low Carbon High Niobium Microalloyed Steel[J].钢铁研究学报(英文版),2011(01):55-60.
[9] 李国和,王敏杰,康仁科.Fe-36Ni高温高应变率动态力学性能及其本构关系[J].材料科学与工艺,2010(06):824-828,834.
[10] JIN Miao,LU Bo,LIU Xin-gang,GUO Huan,JI Hai-peng,GUO Bao-feng.Static Recrystallization Behavior of 316LN Austenitic Stainless Steel[J].钢铁研究学报(英文版),2013(11):67-72.
[11] YANG J H;LIU Q Y;SUN D B et al.Recrystalliza-tion behavior of deformed austenite in high strength mi-croalloyed pipeline steel[J].Journal of Iron and Steel Research,2009,16(01):75-80.
[12] 蔺永诚,陈明松,钟掘.42CrMo钢形变奥氏体的静态再结晶[J].中南大学学报(自然科学版),2009(02):411-416.
[13] 宗影影,徐福昌,单德彬,郭斌,梁迎春.不同晶粒尺寸钛合金高温压缩力学行为研究[J].材料科学与工艺,2010(03):302-306.
[14] H.R. Rezaei Ashtiani;M.H. Parsa;H. Bisadi .Effects of initial grain size on hot deformation behavior of commercial pure aluminum[J].Materials & design,2012(Dec.):478-485.
[15] 陈俊,周砚磊,唐帅,刘振宇,王国栋.Nb-Ti微合金钢的静态再结晶行为[J].钢铁,2012(05):54-58.
[16] 吴红艳,杜林秀,刘相华.一种桥梁用耐候钢的静态再结晶模型[J].东北大学学报:自然科学版,2011(11):1562-1565.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%