{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"原有T-T吸收剂固硫模型以时间作为反应状态参数,无法用于欧拉法脱硫模拟.为此,基于钙转化率的概念,对已有的T-T吸收剂脱硫模型进行了改进.改进的模型形式简单,反应速率与钙转化率的平方呈双线性分布,模型中快慢反应的转折点和反应终止点均随温度升高而增大,表征了反应活性的提高.进一步推导了吸收剂钙转化率的输运方程并对两相质量守恒方程和SO2组分方程进行了修改,将脱硫模型与两相流模型进行了耦合,为循环流化床脱硫数值模拟打下了基础.","authors":[{"authorName":"李飞","id":"3ca22b39-5fbd-4c4b-b0dd-07a44541f5f5","originalAuthorName":"李飞"},{"authorName":"祁海鹰","id":"dc4af21c-440b-4d04-beae-bead96a605e7","originalAuthorName":"祁海鹰"},{"authorName":"由长福","id":"fab6ab3f-ce36-455d-8066-769c8c21af87","originalAuthorName":"由长福"}],"doi":"","fpage":"336","id":"8e115965-86dc-42a3-9ca8-71710bd04483","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c9d49e40-a38c-4c5e-be80-a1c3a1908816","keyword":"T-T吸收剂","originalKeyword":"T-T吸收剂"},{"id":"9902e056-e1d4-4af7-9fd4-e9b20e7cad48","keyword":"脱硫模型","originalKeyword":"脱硫模型"},{"id":"249f844c-36a5-4851-ae1e-6994b5fa9b1e","keyword":"转化率","originalKeyword":"转化率"},{"id":"18e8b077-136e-480e-9e38-9a4971dfc725","keyword":"双流体模拟","originalKeyword":"双流体模拟"}],"language":"zh","publisherId":"gcrwlxb200902045","title":"T-T吸收剂脱硫模型的改进及与双流体模型的耦合","volume":"30","year":"2009"},{"abstractinfo":"四针状氧化锌晶须(T-ZnOw)具有三维四针状结构,具有材料增强、抗静电、抗菌、吸波和吸声等特性,是一种非常有发展前途的多功能材料.利用四针状氧化锌晶须所具有的介电损耗特性,通过与羰基铁粉混杂,制备复合吸收剂.当涂层厚度为3mm,吸收剂和环氧树脂的质量比为2:1时,最大衰减达-24dB,对应频率为8.5GHz,<-10dB的带宽约为5.0GHz.","authors":[{"authorName":"陈志彦","id":"d6f7c828-fbbd-40af-a78d-515d5474a41c","originalAuthorName":"陈志彦"},{"authorName":"邢欣","id":"4a394d65-8735-4cb5-a1e1-d16c47f79265","originalAuthorName":"邢欣"}],"doi":"","fpage":"257","id":"85694668-f8de-45a0-91fe-e9457ecac24c","issue":"z2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"bc4bf82b-ff99-4ff1-958f-a1e6817dea26","keyword":"四针状氧化锌晶须","originalKeyword":"四针状氧化锌晶须"},{"id":"7a5599bc-c820-4923-a20d-c08ffe4f4bde","keyword":"羰基铁粉","originalKeyword":"羰基铁粉"},{"id":"62f9c21b-9575-40af-9e57-e1c4f55dccd4","keyword":"吸波涂层","originalKeyword":"吸波涂层"}],"language":"zh","publisherId":"gncl2010z2019","title":"复合吸收剂T-ZnOw/Fe雷达波吸收性能研究","volume":"41","year":"2010"},{"abstractinfo":"基于重整化平均场理论,在二维空穴掺杂t-t′-J-U模型的框架下,用Gutzwiller平均场近似理论研究高温超导体的基态相图,分析了次近邻跃迁电子(t′)对电子平均双重占据数(d)的影响.发现在掺杂浓度δ≠0的掺杂Gossamer超导态,次近邻跃迁的引入使d的数值在欠掺杂浓度区增大,在过掺杂浓度区显著减少.","authors":[{"authorName":"谢兰清","id":"df5f37cc-345d-4fcb-8317-b3ff1681feab","originalAuthorName":"谢兰清"},{"authorName":"王彩霞","id":"54e2b30a-c8af-4cfa-a3c0-3428b038332e","originalAuthorName":"王彩霞"}],"doi":"","fpage":"69","id":"6f473132-54cb-46c1-b418-32aae02b6ff0","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"ec50a9ed-8014-49c7-a58e-242d68c70a8a","keyword":"高温超导体","originalKeyword":"高温超导体"},{"id":"2f110577-615a-4ef7-a808-77c8435c75cb","keyword":"相图","originalKeyword":"相图"},{"id":"429aff96-e5f4-422c-a048-382d7102dc43","keyword":"电子态","originalKeyword":"电子态"},{"id":"a8251c92-8c46-4fde-b4f4-d8514e56f48b","keyword":"电子次近邻跃迁","originalKeyword":"电子次近邻跃迁"},{"id":"fe096895-d207-4ae7-989d-3dacbecdc582","keyword":"双重占据","originalKeyword":"双重占据"}],"language":"zh","publisherId":"bqclkxygc201302022","title":"t-t′-J-U模型中电子次近邻跃迁对Gossamer超导的影响","volume":"","year":"2013"},{"abstractinfo":"综述了国内外雷达吸收剂的研究进展,较详细地介绍了铁氧体材料、高聚物吸收材料、陶瓷吸收材料、纳米吸收材料、手性材料和智能材料等吸收剂吸收机理和最新研究状况.","authors":[{"authorName":"焦桓","id":"65552f6f-826a-4631-a966-8630d0376857","originalAuthorName":"焦桓"},{"authorName":"周万城","id":"c661c7d5-fd48-4d9a-bf20-e3c80e445003","originalAuthorName":"周万城"}],"doi":"","fpage":"11","id":"ed6a8dca-35a9-4d79-86a5-adf5f7cac3ac","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"fa55f6cc-8a5d-4b08-8f14-7766d752e3d9","keyword":"铁氧体","originalKeyword":"铁氧体"},{"id":"f6e8cd99-3fc4-4fc3-af78-8789e19edee3","keyword":"高聚物","originalKeyword":"高聚物"},{"id":"18be9df4-6e4d-482d-9f48-dd0392a71016","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"f2293394-79d4-419c-b04d-c8cdcab92e8c","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"6fff546d-ce28-4e46-9995-ff33cd37862d","keyword":"手性材料","originalKeyword":"手性材料"},{"id":"1836c830-5452-4389-81ca-f1408507ee4f","keyword":"智能材料","originalKeyword":"智能材料"}],"language":"zh","publisherId":"cldb200003005","title":"雷达吸收剂研究进展","volume":"14","year":"2000"},{"abstractinfo":"对一种常用吸收剂填充的树脂混合体系的反应特性进行了研究,结果表明,吸收剂含量变化影响树脂混合体系的活化能、反应热、反应程度、凝胶时间.通过对吸收剂表面物质研究发现,吸收剂表面存在着与树脂体系发生反应的活性物质,引起吸收剂填充混合体系的反应特性发生变化.","authors":[{"authorName":"许健翔","id":"b12098e5-cb65-4ce3-9956-29b0015bd339","originalAuthorName":"许健翔"},{"authorName":"刘俊能","id":"bc039a12-a784-4cb8-b95c-dcb42597439a","originalAuthorName":"刘俊能"}],"doi":"10.3969/j.issn.1007-2330.2001.05.014","fpage":"58","id":"91d3ee25-1ec5-489a-ac45-3507cafa0816","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"e07d8958-6e6b-49a0-80f3-bbf9e9c2342e","keyword":"吸收剂","originalKeyword":"吸收剂"},{"id":"da389a3f-5a73-40c4-ad86-8562bfa94862","keyword":"吸波材料","originalKeyword":"吸波材料"},{"id":"1a989755-6824-411d-9e09-b272460de9b6","keyword":"反应特性","originalKeyword":"反应特性"}],"language":"zh","publisherId":"yhclgy200105014","title":"吸收剂填充体系的反应特性研究","volume":"31","year":"2001"},{"abstractinfo":"阐述了近年来微波吸收剂的研究动态,总结了铁氧体型吸收剂、金属微粉吸收剂、多晶铁纤维吸收剂以及轻质、高温和导电高分子等几种特种吸收剂最新的研究进展.研究表明,微波吸收剂的纳米化、轻质化、多种损耗机制复合化及优良的耐高温性能是目前微波吸收剂研究的主要方向,也是研制高性能吸波材料的先决条件.","authors":[{"authorName":"何亚琼","id":"3eacab1e-1fcc-4a6b-956e-4ffc2f41364a","originalAuthorName":"何亚琼"},{"authorName":"毛昌辉","id":"3f5ce938-21d3-4519-b118-3508986bfb24","originalAuthorName":"毛昌辉"},{"authorName":"杨剑","id":"326bf57c-a9ff-473d-a399-61bb90ef4ad1","originalAuthorName":"杨剑"}],"doi":"","fpage":"28","id":"ae294607-274c-4a00-bdd1-a453cc03cf4f","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8d6220d2-38de-4c33-8791-c6ffcc79e60d","keyword":"吸收剂","originalKeyword":"吸收剂"},{"id":"c512ae7a-09c2-4071-a651-84eb7da0df94","keyword":"磁性金属","originalKeyword":"磁性金属"},{"id":"cc2b33ea-3e85-4b03-8ff0-173e29a4d2e1","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"8c9e004f-7020-453a-99a9-f4d774f0e009","keyword":"轻质","originalKeyword":"轻质"},{"id":"f30632fc-79e5-46aa-a002-43cea682715f","keyword":"高温","originalKeyword":"高温"}],"language":"zh","publisherId":"cldb201009007","title":"微波吸收剂的研究进展","volume":"24","year":"2010"},{"abstractinfo":"隐身技术已成为当代军事技术的重要内容,受到各军事强国前所未有的重视.吸收剂的研究是促进吸波材料发展的重要环节,是研制和提高吸波材料性能的基础.羰基铁吸收剂作为一种典型的磁损耗型吸收剂,是目前最为常用的雷达波吸收剂之一.当前羰基铁吸收剂的研究主要集中在自身的改性以及与其他吸收剂的共混或复合使用上.在简要介绍羰基铁吸收剂和吸波原理的基础上对这些研究进行了归纳分析与总结,并对羰基铁吸收剂的发展趋势进行了讨论.","authors":[{"authorName":"王轩","id":"9c050e40-fef3-4030-bfc2-48cffcf3e1d7","originalAuthorName":"王轩"},{"authorName":"朱冬梅","id":"a8036f98-2e67-4168-89ff-a0cebddf181b","originalAuthorName":"朱冬梅"},{"authorName":"向耿","id":"e1e09fd3-d088-49a6-97f2-d03c2b195989","originalAuthorName":"向耿"},{"authorName":"周万城","id":"27194203-d4ca-426f-8a10-e5bf9bfe092f","originalAuthorName":"周万城"},{"authorName":"罗发","id":"908aa8f4-5957-4725-a366-43ceb00de1f2","originalAuthorName":"罗发"},{"authorName":"周影影","id":"7f24de1a-eb3c-40ca-8869-9946b62dbdbe","originalAuthorName":"周影影"}],"doi":"10.11896/j.issn.1005-023X.2014.23.004","fpage":"17","id":"6eae334c-b55b-41ea-a1bb-5bc95b9cf15a","issue":"23","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8b740347-19a5-4b4b-9ccb-3c356faa4cea","keyword":"羰基铁","originalKeyword":"羰基铁"},{"id":"b5d97a8c-0be5-4baa-83ea-f51e29811dc0","keyword":"微波吸收剂","originalKeyword":"微波吸收剂"},{"id":"66fb2597-1b15-4236-9b61-71890978dea3","keyword":"改性手段","originalKeyword":"改性手段"}],"language":"zh","publisherId":"cldb201423004","title":"羰基铁吸收剂的研究进展","volume":"28","year":"2014"},{"abstractinfo":"利用磁控溅射设备制备了Fe/SiO2磁性多层膜微波吸收剂.采用扫描电子显微镜(SEM),X射线衍射仪(XRD)对其结构进行表征.将磁性多层膜微波吸收剂制成同轴测试样品,利用网络矢量分析仪测量电磁参数,并针对单层材料进行优化设计.结果表明,该磁性多层膜吸收剂具有较好的微波吸收效果.","authors":[{"authorName":"朱生宾","id":"cacc5029-1b31-491d-addb-03301570dc99","originalAuthorName":"朱生宾"},{"authorName":"李永清","id":"71a99e7c-ebd6-4d7b-b175-381b8368dcfd","originalAuthorName":"李永清"},{"authorName":"程海峰","id":"fe2967e5-a9be-4fd6-bd75-7e676222e251","originalAuthorName":"程海峰"},{"authorName":"曹义","id":"51e771e6-02db-4e02-90ce-f332ac797c07","originalAuthorName":"曹义"}],"doi":"10.3969/j.issn.1005-5053.2005.01.008","fpage":"36","id":"172b415d-c7dd-4fdd-b1a4-fed2e96070ae","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"0fe6e109-1d6d-42e4-ada0-a042f7221963","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"0f55f291-3f29-4c83-987d-5168c914f452","keyword":"磁性多层膜","originalKeyword":"磁性多层膜"},{"id":"9241b6be-b1ed-40f1-89d1-f230b5183d9e","keyword":"微波吸收剂","originalKeyword":"微波吸收剂"}],"language":"zh","publisherId":"hkclxb200501008","title":"磁性多层膜微波吸收剂的制备","volume":"25","year":"2005"},{"abstractinfo":"在隐身材料领域,纳米金属吸收剂是一种重要的吸收剂,但它在高温下易氧化.通过在纳米金属吸收剂表面包覆二氧化硅膜,制得改性纳米金属吸收剂,并对其进行了SEM、TG、电磁参数和雷达波反射衰减表征.结果表明:改性纳米金属吸收剂具有优异的高温抗氧化性,反射率在高低温之间变化极小,且高温下的吸波性能非常稳定,与常温下的吸波性能基本一致.","authors":[{"authorName":"汪宁","id":"cbcbeb34-a10e-49ee-89aa-3f95a6fc56b8","originalAuthorName":"汪宁"},{"authorName":"王永凤","id":"c1b0cf63-5b09-4d27-b9de-51254f44dbf5","originalAuthorName":"王永凤"},{"authorName":"邱华","id":"ff3d0a24-7a60-42c2-9339-99aecd2c2efa","originalAuthorName":"邱华"},{"authorName":"张国海","id":"2591877f-3d34-437a-94c0-6301eeb0cc6e","originalAuthorName":"张国海"}],"doi":"10.3969/j.issn.1001-3660.2011.06.026","fpage":"88","id":"f879a6b4-52c7-4421-b583-5faff5df99a4","issue":"6","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"eb92161a-488b-4362-8866-153430780158","keyword":"纳米金属吸收剂","originalKeyword":"纳米金属吸收剂"},{"id":"d31481fc-0846-4d6f-8a0e-4e3dd26986bf","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"a8f73cbb-a647-4029-9a88-10fcfaa5734e","keyword":"吸波涂层","originalKeyword":"吸波涂层"},{"id":"3920c96a-e5e3-4fed-b632-8651e911da35","keyword":"电磁参数","originalKeyword":"电磁参数"},{"id":"bbc80c61-f786-4f09-b0cd-5793de27bc60","keyword":"雷达波反射衰减","originalKeyword":"雷达波反射衰减"}],"language":"zh","publisherId":"bmjs201106026","title":"纳米金属吸收剂耐高温技术研究","volume":"40","year":"2011"},{"abstractinfo":"研究了铁氧体吸收剂粉体的煅烧工艺对粉体的性能、形貌和相组成的影响.研究表明,粉体的形貌和相组成对其复数磁导率有较大影响.经过对煅烧工艺进行优化,制备出了较高性能的吸收剂粉体.","authors":[{"authorName":"李斌太","id":"90c4f5dd-176d-4476-b60f-467ad83a0ceb","originalAuthorName":"李斌太"},{"authorName":"杜林虎","id":"43dfd8c1-4566-4694-9003-1c263ca7e8b4","originalAuthorName":"杜林虎"},{"authorName":"周洋","id":"2f57cd5b-0916-465f-b5cd-51a12815acf9","originalAuthorName":"周洋"},{"authorName":"华文君","id":"2a393cc9-fd6c-4281-ba3d-9b6354009b19","originalAuthorName":"华文君"},{"authorName":"陈大明","id":"2bd857c2-cdc8-4edc-850a-35fcc120eda0","originalAuthorName":"陈大明"}],"doi":"10.3969/j.issn.1005-5053.2000.03.027","fpage":"139","id":"b18988ed-1e3f-4e01-afe2-dce35cf08289","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"4973b67f-f4c9-4113-867e-b4624830720f","keyword":"铁氧体吸收剂粉体","originalKeyword":"铁氧体吸收剂粉体"},{"id":"38a51aff-0012-4aa9-bea1-a3df31052514","keyword":"煅烧工艺","originalKeyword":"煅烧工艺"},{"id":"8ba19347-1fd4-4aa6-a5b6-069ea508341b","keyword":"复数磁导率","originalKeyword":"复数磁导率"}],"language":"zh","publisherId":"hkclxb200003027","title":"铁氧体吸收剂粉体的煅烧工艺研究","volume":"20","year":"2000"}],"totalpage":4422,"totalrecord":44213}