欢迎登录材料期刊网

材料期刊网

高级检索

用热压法制备Ti/Al扩散偶,并在525,550,575,600℃进行热处理.结果表明:当Al未完全消耗时,TiAl3是Ti/Al界面处唯一的产物,TiAl3向Al箔一侧长大,Ti箔中没有检测到Al原子的存在.从固溶体的溶解度极限,Al、Ti和TiAl3的晶格失配度,以及新相形成所增加的界面能3个方面解释TiAl3的首先生成.Ti在Al中的溶解度极限很小,Al(Ti)固溶体很容易生成,以及Al、Ti和TiAl3的密排面错配度很小,促使TiAl3优先形核.在所有Ti-Al化合物中,形成TiAl3所增加的界面能最少,有利于TiAl3优先形核长大.由于动力学的不稳定性,其他Ti-Al化合物的生成与长大受到抑制.

Ti/Al diffusion couples fabricated by hot pressing were annealed at 525, 550, 575 and 600 ℃. TiAl3 was the only observed phase at the Ti/Al interface when the unreacted Al foils remained. TiAl3 grew towards Al foil side. Few Al atoms were detected in Ti foils. The first formation of TiAl3 is explained on the basis of solubility limits of terminal solid solution, lattice mismatch among Al, Ti and TiAl3, and the increasing interfacial energy caused by newly formed interface. The first saturation of Al(Ti)solid solution due to the little solubility of Ti in Al, and the slight misfit among the close-packed planes of Al, Ti and TiAl3, advance the nucleation of TiAl3. TiAl3, rather than other compounds, has the lowest increasing interfacial energy, indicating its preferential formation. The formation of other titanium aluminides is suppressed due to their growth which is kinetically unstable.

参考文献

[1] 罗文中;沈军;闵志先 et al.[J].稀有金属材料与工程,2009,38(10):1864.
[2] Draper SL;Krause D;Lerch B;Locci IE;Doehnert B;Nigam R;Das G;Sickles P;Tabernig B;Reger N .Development and evaluation of TiAl sheet structures for hypersonic applications[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2007(1-2):330-342.
[3] 刘峰晓,贺跃辉,刘咏,黄伯云,李智.粉末冶金制备TiAl基合金板材的研究现状及趋势[J].稀有金属材料与工程,2005(02):169-173.
[4] Walser R M;Bene R W .[J].Applied Physics Letters,1976,28:624.
[5] Ronay M .[J].Applied Physics Letters,1983,42:577.
[6] Pretorius R;Vredenberg A M;Saris F W .[J].Journal of Applied Physics,1991,70:3636.
[7] Laik A;Bhanumurthy K;Kale G B .[J].Intermetallics,2004,12:69.
[8] Xu L;Cui Y Y;Hao Y L .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2006,436:638.
[9] Liu Huashan;Wang Hang;Zhu Wenjun .[J].Journal of Materials Research,2007,22:1502.
[10] Luo J G;Acoff V L .[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2004,379:164.
[11] Kattner U R;Lin J C;Chang Y A .[J].Metallurgical and Materials Transactions A,1992,23:2081.
[12] Kerr H W;Cisse J;Boiling G F .[J].Acta Metallurgica,1974,22:677.
[13] Tardy J;Tu K N .[J].Physical Review B,1985,32:2070.
[14] Benedictus R.;Mittemeijer EJ.;Bottger A. .THERMODYNAMIC MODEL FOR SOLID-STATE AMORPHIZATION IN BINARY SYSTEMS AT INTERFACES AND GRAIN BOUNDARIES[J].Physical Review.B.Condensed Matter,1996(13):9109-9125.
[15] Miedema A R;Chatel P F;Boer F R .[J].Physica B+C,1980,100:1.
[16] G(o)sele U;Tu K N .[J].Journal of Applied Physics,1982,53:3252.
[17] Wohlert S.;Bormann R. .Phase selection governed by different growth velocities in the early stages of the Ti/Al phase reaction[J].Journal of Applied Physics,1999(2):825-0.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%