{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"将改性的MgSO4和CaCO3晶须加入聚丙烯中,在二次开模条件下制备微发泡聚丙烯(PP)/晶须复合材料,通过晶须在基体中的分散性、泡孔直径大小分布和泡孔密度,分析了不同晶须对材料的发泡行为与力学性能的影响.结果表明,晶须具有一定成核效应,CaCO3晶须的泡孔尺寸25.27μm左右,填充增强效果差;MgSO4晶须的泡孔尺寸在26.75μm左右,填充增强效果好,拉伸强度提高到30.5 MPa,与未发泡PP拉伸强度30.8 MPa相近,说明MgSO4既能达到降低成本又能起到增强效果;MgSO4晶须是微发泡PP复合材料的理想一维填料.","authors":[{"authorName":"龚维","id":"1e1a5ad0-69a9-426c-8ac9-8a58b8b4de7c","originalAuthorName":"龚维"},{"authorName":"高家诚","id":"0ac7da30-f16b-4c9a-9c62-32bb9b30ac34","originalAuthorName":"高家诚"},{"authorName":"何力","id":"2934e8da-3376-49d0-a9a6-93effd193a01","originalAuthorName":"何力"},{"authorName":"朱建华","id":"34e6b410-9a4d-43ac-8f16-651ac9bf5528","originalAuthorName":"朱建华"},{"authorName":"于杰","id":"eceb927a-94b6-4ed3-8d88-14ad4787acd4","originalAuthorName":"于杰"},{"authorName":"何颖","id":"815ef803-8180-4ddd-9754-1d33d7d4c231","originalAuthorName":"何颖"}],"doi":"","fpage":"67","id":"a8ec452f-0ddb-4eeb-8d93-a06fdf12b051","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"87f22b40-e0b2-499b-900a-32f5d78f3516","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"3a7791a6-eea4-40f9-8d38-55c382659a70","keyword":"晶须","originalKeyword":"晶须"},{"id":"1936fca0-a4b3-4267-b6a0-26586d977b42","keyword":"二次开模","originalKeyword":"二次开模"},{"id":"dd574315-cc4d-4e31-b70a-509525466f85","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"cf7a9402-5946-4629-aed6-8f857fb821ee","keyword":"发泡行为","originalKeyword":"发泡行为"}],"language":"zh","publisherId":"gfzclkxygc201103018","title":"微发泡聚丙烯/晶须复合材料的发泡行为与力学性能","volume":"27","year":"2011"},{"abstractinfo":"采取模压成型的方式制备发泡天然橡胶/乙烯-醋酸乙烯共聚物(EVA)复合材料,通过复合材料的相容性和硫化与发泡匹配机理,研究了EVA含量对天然橡胶发泡质量及力学性能的影响.结果表明,随着EVA含量的增加,泡孔直径、泡孔尺寸分布先增大后降低,泡孔密度先降低后增大.EVA含量为20 phr时,其泡孔质量最好,泡孔直径为97.1 μm,泡孔尺寸分布为23.2 μm,泡孔密度为6.8×106 cm-3,当EVA含量超过20 phr时,泡孔直径、泡孔尺寸分布逐渐增大,泡孔密度随之降低.复合发泡材料的硬度、冲击回弹性、热压缩永久变形等性能则随着EVA含量的增加出现小范围降低,但结合发泡材料的性价比来看,在EVA含量为20 phr时,发泡材料的力学性能较理想.","authors":[{"authorName":"张敬","id":"a111d483-944d-4c54-a812-72441c50a129","originalAuthorName":"张敬"},{"authorName":"王醴均","id":"d30764df-4adb-40a8-94b7-37829e3bbc93","originalAuthorName":"王醴均"},{"authorName":"张纯","id":"b4c4348c-3982-4210-b027-a2bab2bfdae1","originalAuthorName":"张纯"},{"authorName":"何力","id":"97abcb4f-502d-43c7-9f45-a886be3f7915","originalAuthorName":"何力"},{"authorName":"郭建兵","id":"dd302aa0-785c-4eba-ac17-b0b26a1fbd02","originalAuthorName":"郭建兵"},{"authorName":"于杰","id":"c7fb7fce-1ffc-42e4-b41e-7f010b0ce279","originalAuthorName":"于杰"},{"authorName":"龚维","id":"010543e3-a979-4c8f-982a-006d5d0542eb","originalAuthorName":"龚维"}],"doi":"","fpage":"53","id":"fe2392fc-eeb4-43f5-b93a-1b03df59f0e0","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"d2ac5806-7f8f-4596-b0d9-0c0aaf78d9c4","keyword":"乙烯-醋酸乙烯共聚物","originalKeyword":"乙烯-醋酸乙烯共聚物"},{"id":"d6eb44da-f571-4413-9b29-bab79a001c7f","keyword":"天然橡胶","originalKeyword":"天然橡胶"},{"id":"f00013b8-51cc-4fed-b86d-3d20fa199975","keyword":"发泡质量","originalKeyword":"发泡质量"},{"id":"1f262a53-1dc7-4e81-ba0a-884c6659b0f2","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gfzclkxygc201403012","title":"天然橡胶/EVA发泡复合材料发泡质量及力学性能的分析","volume":"30","year":"2014"},{"abstractinfo":"采用一种工艺简单、反应时间短、能耗低的合成工艺合成双酚A型聚芳醚酮.研究了单体配比、聚合反应时间、反应物浓度、溶剂对聚合反应的影响,最终确定合适的反应条件:单体摩尔比为1∶1,聚合反应时间为2.5h,溶剂为N-甲基吡咯烷酮,固含量为25%.同时研究了单体配比对聚合物热性能的影响,当单体摩尔比为1∶1时,聚合物的玻璃化转变温度和热失重温度都较高.","authors":[{"authorName":"赵晓刚","id":"882d5b86-6bd4-466e-9eff-9bb0d0d8b419","originalAuthorName":"赵晓刚"},{"authorName":"龚维","id":"34749b67-e14a-4917-8306-903edc01d4af","originalAuthorName":"龚维"},{"authorName":"冀克俭","id":"b45f3fb4-ab2b-40d9-bcd2-f04698c6dd51","originalAuthorName":"冀克俭"},{"authorName":"邓卫华","id":"305c7f60-78bf-4754-8fd6-8a80d7a24c91","originalAuthorName":"邓卫华"},{"authorName":"周彤","id":"1fdd57f2-6f4d-409c-a2d5-d1a578c4e7a4","originalAuthorName":"周彤"},{"authorName":"李艳玲","id":"ce3fbf58-075a-4c7c-a228-2a6f603857a8","originalAuthorName":"李艳玲"}],"doi":"","fpage":"1","id":"604c93e2-1262-4b7b-ae37-b86eecd99c92","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b2645c4e-4d42-4d8f-b35b-63f3452edad7","keyword":"双酚A型聚芳醚酮","originalKeyword":"双酚A型聚芳醚酮"},{"id":"b32626a6-024d-4e62-b019-64be7ab5fb27","keyword":"合成","originalKeyword":"合成"},{"id":"baf6cf7f-8945-477c-a3b4-404341afe991","keyword":"工艺","originalKeyword":"工艺"},{"id":"8109e380-2056-4440-a0d7-4147ca9f0d1a","keyword":"热性能","originalKeyword":"热性能"}],"language":"zh","publisherId":"gfzclkxygc201502001","title":"双酚A型聚芳醚酮合成的工艺条件","volume":"31","year":"2015"},{"abstractinfo":"采取模压成型制备发泡天然橡胶复合材料,通过复合材料硫化与发泡匹配机理,研究了硫化剂含量对发泡天然橡胶质量及力学性能的影响.结果表明:随着硫化剂含量的增加,发泡材料的泡孔直径、泡孔尺寸分布逐渐降低,泡孔密度先增加后降低;当硫化剂含量为2.5份时,其泡孔质量最理想,泡孔直径、泡孔密度分别为175.12μm、2.25×106cm-3.发泡天然橡胶材料的力学性能方面,其综合性能较好,邵氏硬度20,压缩永久变形95%,冲击回弹性59%.从发泡质量和力学性能的角度来看,当硫化剂含量为2.5份时,发泡材料的力学性能较好.","authors":[{"authorName":"麻玉龙","id":"c6421411-7e0a-4b7e-aeaa-aff3218fb20f","originalAuthorName":"麻玉龙"},{"authorName":"张纯","id":"08a9ef97-1250-4cc9-b396-86cf10d01ad0","originalAuthorName":"张纯"},{"authorName":"张敬","id":"f09748f3-7f5b-40d3-8bb5-52c1d9c19727","originalAuthorName":"张敬"},{"authorName":"龚维","id":"86cb701d-bf90-4403-9b7a-238fb9c2526f","originalAuthorName":"龚维"},{"authorName":"何力","id":"a3ecf5db-6eed-44e2-b0f5-ef84cc2ba549","originalAuthorName":"何力"}],"doi":"10.11896/j.issn.1005-023X.2014.20.014","fpage":"56","id":"95ad8eb6-8d74-4859-8ccf-5f4f9f0b94ff","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8702eee9-65d7-483b-8298-3a616b3953f8","keyword":"硫化剂","originalKeyword":"硫化剂"},{"id":"dd712b7f-2f33-4e8b-b9e6-b599ea3a99fc","keyword":"天然橡胶","originalKeyword":"天然橡胶"},{"id":"12367006-7966-43f4-a9eb-30920d9a41c8","keyword":"发泡行为","originalKeyword":"发泡行为"},{"id":"943d53cb-7b02-4c2f-8bc2-911bb5d7019b","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"cldb201420014","title":"硫化体系对发泡制品的质量及力学性能的影响","volume":"28","year":"2014"},{"abstractinfo":"利用型腔体积可控注塑发泡装置制备不同体积膨胀率的聚丙烯和聚丙烯/有机蒙脱土(PP/OMMT)复合材料发泡试样,探究了不同体积膨胀率下聚丙烯发泡行为.结果表明,在较高的体积膨胀率下,泡孔结构趋于恶化,而有机蒙脱土的引入提高了聚丙烯粘弹响应和降温结晶速率,起到了抑制泡孔结构恶化的作用.在泡孔生长动力学研究的基础上,将泡孔生长过程分为2个阶段,快速生长阶段和慢速生长应力松弛阶段,分析了聚合物粘弹性对泡孔生长、稳定过程的影响.","authors":[{"authorName":"郝明洋","id":"90a8f91e-8c7b-40dc-bbc8-82412b349191","originalAuthorName":"郝明洋"},{"authorName":"段焕德","id":"ab137b14-dabf-4268-894d-2019b02a2c50","originalAuthorName":"段焕德"},{"authorName":"张纯","id":"00e03dde-56ea-4faa-905c-01cc7575f7de","originalAuthorName":"张纯"},{"authorName":"龚维","id":"cd07a2a9-4ea1-46fd-a348-d9c104f5883d","originalAuthorName":"龚维"},{"authorName":"何力","id":"42abdaa8-d1bf-4cff-beb8-815de258856f","originalAuthorName":"何力"}],"doi":"","fpage":"81","id":"e50989f4-720e-4118-a75a-439aec299cfe","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"45ecf3ec-a399-4471-a689-0b306c6e2095","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"af9eb80d-98b4-4146-9199-c64b3bc182be","keyword":"有机蒙脱土","originalKeyword":"有机蒙脱土"},{"id":"b81594eb-9a8e-4f93-b6dd-e3afad9c5828","keyword":"注塑发泡","originalKeyword":"注塑发泡"},{"id":"ba7d3247-522b-4e80-bdc0-f922759140e5","keyword":"体积膨胀率","originalKeyword":"体积膨胀率"},{"id":"aac7b322-eec8-4e12-b36d-4f1c990b0d36","keyword":"发泡行为","originalKeyword":"发泡行为"}],"language":"zh","publisherId":"gfzclkxygc201510016","title":"聚丙烯/有机蒙脱土复合材料的发泡行为","volume":"31","year":"2015"},{"abstractinfo":"运用湿法研磨和溶液法将化学发泡剂加载到硅藻土的微孔中,通过浮选技术、TG以及EDS等表征方式,分析了湿法研磨和溶液法对复合发泡剂加载效果的影响因素,并通过注塑成型方式制备微发泡聚烯烃复合材料,研究其对发泡质量的影响规律.结果表明,湿法研磨不适于制备硅藻土/OBSH复合发泡剂,溶液法成功制备了硅藻土/OBSH复合发泡剂.添加硅藻土/OBSH复合发泡剂的微发泡聚烯烃材料,其发泡质量显著优于相同条件下使用纯OBSH发泡剂时的发泡质量,泡孔直径从275.47 μm降低至176.45 μm,泡孔密度从3.32×103个/cm3增加至5.73×104个/cm3.","authors":[{"authorName":"龚维","id":"1c31ed86-76b3-486b-8a85-60be9aef28ed","originalAuthorName":"龚维"},{"authorName":"蒋团辉","id":"f3387bfd-4f74-4bf1-973c-d75b68e4ed68","originalAuthorName":"蒋团辉"},{"authorName":"王昌银","id":"b682ffe5-3d63-4865-b7c4-e12cb7420600","originalAuthorName":"王昌银"},{"authorName":"付海","id":"294d3f59-108d-49c3-9746-bb0c6d819d05","originalAuthorName":"付海"},{"authorName":"何力","id":"cf3e4028-b9d6-4a83-a556-5936190316aa","originalAuthorName":"何力"}],"doi":"10.11896/j.issn.1005-023X.2016.18.015","fpage":"66","id":"4e1e20bc-d756-4685-8bca-e413ff584811","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b67fddbd-2298-4fd7-8019-5fbdd34222f7","keyword":"发泡剂","originalKeyword":"发泡剂"},{"id":"1ebf35eb-b8f2-4759-af88-eeb29dfafa2a","keyword":"聚烯烃","originalKeyword":"聚烯烃"},{"id":"883a88fd-2d85-4f3b-84eb-0021b3900093","keyword":"硅藻土","originalKeyword":"硅藻土"},{"id":"32d9c24d-54a1-4c55-a9df-8cd7b79e6b31","keyword":"发泡质量","originalKeyword":"发泡质量"}],"language":"zh","publisherId":"cldb201618015","title":"聚烯烃材料复合发泡剂的制备及应用","volume":"30","year":"2016"},{"abstractinfo":"通过对无规共聚聚丙烯(PPR)管材专用料进行退火处理,采用SEM、DSC、XRD、POM等表征技术,分析了退火对PPR力学性能及结晶行为的影响规律.结果表明,在常温及低温(0~23℃)条件下,与未退火的PPR比较,退火工艺为120℃退火6h的材料冲击韧性最理想,其综合力学性能最好.在23℃时的冲击强度为51.61kJ/m2,是未退火样品的1.9倍.0℃时的冲击强度也高达33.86kJ/m2,是未退火样品的2.9倍.","authors":[{"authorName":"王潇梦","id":"6d899f80-6fbf-4a58-95f3-aafbdff74278","originalAuthorName":"王潇梦"},{"authorName":"尹晓刚","id":"63a12919-97a4-46f7-93b8-5d95d5a54c56","originalAuthorName":"尹晓刚"},{"authorName":"蒋团辉","id":"e16a6fd2-6871-4aed-bcd6-19262bc541eb","originalAuthorName":"蒋团辉"},{"authorName":"刘卫","id":"2fa6eaa4-9a2c-4fb1-8ec8-9e3a3c89a259","originalAuthorName":"刘卫"},{"authorName":"龚维","id":"530e3053-82a1-4a39-a8f0-1c0976968b2b","originalAuthorName":"龚维"}],"doi":"10.11896/j.issn.1005-023X.2017.04.015","fpage":"65","id":"7159e669-e62e-487b-8cf2-84136b89cc95","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"24ada86d-a99a-4dd1-ae07-9d5dd6843bc0","keyword":"无规共聚聚丙烯","originalKeyword":"无规共聚聚丙烯"},{"id":"56e9add3-c5d9-4b77-87fd-f5b24272d65d","keyword":"退火","originalKeyword":"退火"},{"id":"b63fa7dc-71ed-43a3-89b5-d73011ac744d","keyword":"抗低温性能","originalKeyword":"抗低温性能"},{"id":"8a2b01b7-b0b0-4b2e-8389-116c3f112b4b","keyword":"结晶行为","originalKeyword":"结晶行为"}],"language":"zh","publisherId":"cldb201704015","title":"退火对PPR管材专用料结晶行为及抗低温性能的影响","volume":"31","year":"2017"},{"abstractinfo":"利用型腔体积可控注塑发泡装置制备微发泡聚丙烯(PP)/粉末橡胶复合材料,通过橡胶粒子的分散性以及复合材料的结晶行为,研究不同橡胶粒子对聚丙烯复合材料发泡行为和力学性能的影响.结果表明:橡胶粒子的加入使微发泡聚丙烯材料的泡孔分布细密而均匀,微发泡聚丙烯/马来酸酐接枝聚丙烯/粉末丁腈胶(PP/PP-MAH/NBR)复合材料的发泡质量较理想,其泡孔密度和尺寸分别为7.64×106个/cm3,29.78μm;综合泡孔结构和力学性能,微发泡聚丙烯/聚丙烯接枝马来酸酐/粉末羧端基丁腈胶(PP/PP-MAH/CNBR)复合材料的力学性能最优,与纯PP比较其冲击强度提升了2.2倍,拉伸强度仅仅降低了26%,是理想的微发泡复合材料.","authors":[{"authorName":"何跃","id":"87f0a7d7-fdc3-47ba-a2ed-1af7a3d04705","originalAuthorName":"何跃"},{"authorName":"蒋团辉","id":"2ffd3070-6320-4a98-bab9-42ce99bc39a2","originalAuthorName":"蒋团辉"},{"authorName":"刘阳夫","id":"a9579138-90c5-4ce3-9570-a3ee1e7ee93e","originalAuthorName":"刘阳夫"},{"authorName":"龚维","id":"cb66f418-6038-4ac0-9b2d-51899e144e7b","originalAuthorName":"龚维"},{"authorName":"何力","id":"c736b211-3d4a-4515-9695-65dab65256a5","originalAuthorName":"何力"}],"doi":"10.11868/j.issn.1001-4381.2015.000728","fpage":"80","id":"ee020431-e4e9-4a82-ba2a-0533c95dd9ad","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"a9a32f7b-f717-420b-baa9-30efededa1b9","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"29538f1a-1838-4ef6-8dce-0249b40f1247","keyword":"橡胶粒子","originalKeyword":"橡胶粒子"},{"id":"74954e38-f97f-40dd-a86f-d33e59ec3177","keyword":"发泡行为","originalKeyword":"发泡行为"},{"id":"d3e9d45b-172f-4b09-a644-3b5a900d9721","keyword":"结晶行为","originalKeyword":"结晶行为"},{"id":"50a3ec5b-3161-49ff-89f0-0b914aa316ba","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"clgc201702013","title":"橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响","volume":"45","year":"2017"},{"abstractinfo":"采用化学发泡法制备了聚丙烯/聚丙烯接枝马来酸酐/环氧树脂(PP/PP-g-MAH/EP)微孔复合发泡材料,研究了EP粉体含量对其发泡行为及力学性能的影响.结果表明,EP粉体在发泡过程中起异相成核作用,且与PP-g-MAH反应形成的交联网络结构提高了复合材料的熔体强度,从而显著改善了泡孔结构.随着EP含量增加,微孔发泡材料的拉伸强度、弯曲强度和冲击强度都呈现先增大后减小的趋势.当EP含量为5%时,复合材料的泡孔尺寸最小,泡孔密度最大,泡孔分布最均匀,微孔发泡材料的冲击强度最大;当EP含量为1%时,拉伸强度、弯曲强度最大,发泡材料的综合力学性能最佳.","authors":[{"authorName":"高萍","id":"c06905f7-7568-4bd2-9729-a7c08bda2e20","originalAuthorName":"高萍"},{"authorName":"王醴均","id":"57a584ae-b8c2-4060-add0-d036d145c744","originalAuthorName":"王醴均"},{"authorName":"蒋团辉","id":"cda17574-2650-417c-a6c9-1b84f8c7abd4","originalAuthorName":"蒋团辉"},{"authorName":"龚维","id":"1ab8ec7e-3094-4485-8626-5a642d089eac","originalAuthorName":"龚维"},{"authorName":"何力","id":"500b9e79-14d2-4324-9ad5-f8e5695e6194","originalAuthorName":"何力"}],"doi":"","fpage":"58","id":"dc74bed1-99e6-4b96-b1cc-1f027d64f641","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"5c9371f8-0278-491f-ac40-77c37ee8b18f","keyword":"聚丙烯","originalKeyword":"聚丙烯"},{"id":"55649769-755e-497d-8741-c0688a883ed9","keyword":"微孔发泡","originalKeyword":"微孔发泡"},{"id":"63098926-b19a-46f5-b788-f81c68f8b89a","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"54802297-e775-4cdb-b592-10584a3310fd","keyword":"发泡行为","originalKeyword":"发泡行为"},{"id":"229b0055-a3e1-44e7-886a-fed46e333f7c","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gfzclkxygc201601011","title":"EP含量对PP/PP-g-MAH/EP微孔发泡复合材料发泡行为及力学性能的影响","volume":"32","year":"2016"},{"abstractinfo":"采用化学发泡法注塑成型工艺制备了微发泡聚丙烯(PP)/纤维复合材料,通过流变理论和纤维与树脂的界面行为,研究了玻璃纤维(GF)、芳纶纤维(AF)和碳纤维(CF)对微发泡聚丙烯复合材料发泡行为的影响.结果表明,纤维的加入可以有效改善微发泡PP材料的泡孔结构,改善效果CF>GF>AF,这归因于纤维的成核能力和PP/纤维复合材料流变性能的综合作用;比表面积越大、长度越短和分散性越好的纤维可以提供更多的成核点位置,从而可以获得具有较小泡孔尺寸和较大泡孔密度的微发泡材料.","authors":[{"authorName":"王昌银","id":"933b873c-388f-40ea-93bb-6223c343b020","originalAuthorName":"王昌银"},{"authorName":"段焕德","id":"93f71696-89cf-474f-ac45-965c1d871f71","originalAuthorName":"段焕德"},{"authorName":"张纯","id":"fa65f820-5696-400a-b040-5a2f4a584c17","originalAuthorName":"张纯"},{"authorName":"蒋团辉","id":"af857f48-ab35-4741-8a12-c45f75eeab6f","originalAuthorName":"蒋团辉"},{"authorName":"何力","id":"66a473cf-3f33-493e-8e8b-a43435b64e3b","originalAuthorName":"何力"},{"authorName":"龚维","id":"b74a1569-6a98-4b66-9ad0-3ce85991fb2b","originalAuthorName":"龚维"}],"doi":"","fpage":"131","id":"752ee9a6-085f-440b-b46c-d195d2f6d616","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8391fa58-0047-4070-8058-ec26b2f9f49d","keyword":"化学发泡","originalKeyword":"化学发泡"},{"id":"0b89b063-2843-437b-9791-0af9004cdab1","keyword":"发泡行为","originalKeyword":"发泡行为"},{"id":"e6fe9b9e-bf19-431a-bb0e-c2616365acdc","keyword":"短纤维","originalKeyword":"短纤维"},{"id":"8c0093c2-6329-4324-b42e-678f4dee3470","keyword":"成核作用","originalKeyword":"成核作用"},{"id":"9d2b559c-c5f9-482f-b4e4-25525af9adb7","keyword":"流变性能","originalKeyword":"流变性能"}],"language":"zh","publisherId":"gfzclkxygc201601025","title":"纤维对微发泡聚丙烯复合材料发泡行为的影响","volume":"32","year":"2016"}],"totalpage":796,"totalrecord":7956}