欢迎登录材料期刊网

材料期刊网

高级检索

以乙二胺四乙酸(EDTA)为络合剂,采用EDTA络合溶胶-凝胶法向氩气雾化制备的预合金粉末中添加Y2O3,复合粉通过热等静压致密化,锻造后固溶处理,制得化学成分为Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y2O3(0.4Y2O3/12Cr,质量分数,%)的氧化物弥散强化(ODS)铁素体钢(12Cr)。采用SEM、FE-SEM、XRD对复合粉末、热等静压态和锻造态Y2O3/12Cr铁素体钢中的氧化物的形成过程和行为进行了分析和表征。结果表明:化学法制备的Y2O3弥散强化0.4Y2O3/12Cr铁素体钢中氧化物的形成机制有络合热分解机制、界面反应机制和再析出机制。通过选择合适的工艺参数和机械分散作用可获得细小均匀的氧化物强化相。

An oxide dispersion strengthened(ODS) ferritic steel with nominal composition of Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y2O3(0.4Y2O3/12Cr,mass fraction,%) was produced by using ethylene diamine tetraacetic acid(EDTA) complex method to add Y2O3 particles to an argon atomized steel powder,followed by hot isostatic pressing,forging and heat treatment.The formation process and behavior of oxides in the composite powder,the 0.4Y2O3/12Cr steels in hot isostatic pressing and under forged conditions were characterized by using SEM,FE-SEM and XRD.The results show that the oxides formation mechanisms of 0.4 Y2O3/12Cr steel by EDTA complex method are complex thermal decomposition mechanism,interfacial reaction mechanism,and reprecipitation mechanism.The fine and uniform oxide dispersoids distributtion in the ferrite matrix could be obtained by choosing appropriate parameters and mechanical dispersing effect.

参考文献

[1] Miao P, Odette G R, Yamamoto T, et al. Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys [J]. Journal of Nuclear Materials, 2007, 367-370: 208-212.
[2] Ortega Y, Monge M A, De Castro V, et al. Void formation in ODS EUROFER produced by hot isostatic pressing [ J]. Journal of Nuclear Materials, 2009, 386-388: 462-465.
[3] Saito J, Suda T, Yamashita S, et al. Void formation and microstructural development in oxide dispersion strengthened ferritie steels during electron- irradiation [J]. Journal of Nuclear Materials, 1998, 258-263 : 1264-1268.
[4] ChenY L, Jones A R. Reduction of porosity in oxide dispersion-strengthened alloys produced by powder metallurgy [J]. Metallurgical and Materials Transactions A, 2001, 32 (8) : 2077-2085.
[5] Chen Y L, Jones A R, Miller U. Origin of porosity in oxide-dispersion-strengthened alloys produced by mechanical alloying [J]. Metallurgical and Materials Transactions A, 2002, 33(8): 2713-2718.
[6] Turker M. Formation of porosity in ferritic ODS alloys on high temperature exposure [J]. Journal of Materials Science, 2005, 40(5): 1201-1208.
[7] Schneibei J H, Liu C T, Hoelzer D T, et al. Development of porosity in an oxide dispersion - strengthened ferritic alloy containing nanoscale oxide particles [J]. Seripta Materialia, 2007, 57(11): 1040-1043.
[8] YamashitaS, Watanabe S, Ohnuki S, et al. Effect of mechanical alloying parameters on irradiation damage in oxide dispersion strengthened ferritic steels [J]. Journal of Nuclear Materials, 2000, 283-287: 847-651.
[9] Verhiest K, Almazouzi A, De Wispelaere N, et al. Development of oxides dispersion strengthened steels for high temperature nuclear reactor applications [ J ]. Journal of Nuclear Materials, 2009, 385(2): 308-311.
[10] 李立,施利毅,王源,等.溶胶-凝胶法制备纳米TiO2-ZrO2/Poly(MMA-co-MSMA)复合材料[J].复合材料学报,2010,27(3):122-127.
[11] 崔正南,许怀哲,郝维昌,等.溶胶-凝胶法制备Cu/ZnO的室温铁磁性[J].复合材料学报,2009,26(4):126-129.
[12] 毋伟,贾梦秋,陈建峰,等.硅烷偶联剂对溶胶凝胶法纳米二氧化硅复合材料制备及应用的影响[J].复合材料学报,2004,21(2):70-75.
[13] 胡本芙,郭丽娜,贾成厂,等.双束(H^+/e^-)辐照下氢对12Cr-ODS铁素体钢组织损伤影响研究[J].原子能科学技术,2009,43(12):1114-1117.
[14] 胡本芙,郭丽娜,贾成厂,等.双束(H^+/e^-)同时辐照对12Cr-ODS钢氧化物稳定性影响[J].核动力工程,2009,30(6):8-10.
[15] Guo L N, Jis C C, Hu B F, et al. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route [J]. Materials Science and Engineering A, 2010, 527(20): 5220-5224.
[16] Knacke O, Kubaschewski O, Hesselmann K. Thermochemical properties of inorganic substances [ M]. Berlin: Springer- Verlag, 1991.
[17] Okuda T, Fujiwara M. Dispersion behaviour of oxide particles in mechanically alloyed ODS steel [J]. Journal of Materials Science Letters, 1995, 14(22): 1600-1603.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%