欢迎登录材料期刊网

材料期刊网

高级检索

目的:制备高容量和循环性能稳定的锂离子电池复合电极材料。方法通过L-半胱氨酸(L-cys)辅助水热法合成SnS2-SnO2/石墨烯复合纳米材料,采用XRD,SEM,TEM和HRTEM技术对其进行结构表征,并采用循环伏安、恒流充放电和电化学阻抗技术研究了其电化学贮锂性能。结果随着水热溶液中L-cys的量增加,复合材料中少层数结构SnS2的含量也增加。当Sn4+/L-cys的物质的量之比为1∶4时,制得了SnS2/石墨烯复合纳米材料,而且石墨烯的存在在一定程度上抑制了SnS2沿c轴方向的生长,减少了层状SnS2的层数。结论由于二维层状结构的SnS2具有与石墨烯类似的微观结构和形貌,与石墨烯的复合具有更好的匹配性和相互协同效应,增强了SnS2/石墨烯复合材料的电化学贮锂性能,使其具有较高的可逆储锂容量、良好的循环性能和增强的倍率特性。

ABSTRACT:Objective To prepare the nanomaterials with high specific capacity and stable cyclic performance as Li-ion battery anode. Methods The SnO2-SnS2/GNS composites were prepared by an L-cys-assisted hydrothermal method and characterized by XRD, SEM, TEM and HRTEM. The electrochemical performances of the composites for reversible lithium storage were measured by cyclic voltammogram, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Results With the increasing amount of L-cys in the hydrothermal solution, the content of SnS2 in the low-rise structure of the composite material also increased. The SnS2/graphene nanocomposite could be prepared when the molar ratio of Sn4+/L-cys was 1 ∶ 4. The presence of graphene in-hibited the growth of SnS2 along the c-axis direction to some extent, and reduced the layer number of the layered SnS2 . Conclusion Because the two-dimensional layered SnS2 had similar morphology and microstructure to graphene, the compositing of the layered SnS2 with graphene exhibited better synergetic effects. Therefore, the SnS2/graphene nanocomposite showed a high reversible spe-cific capacity with stable cyclic performance and enhanced rate capability.

参考文献

[1] Hongdong Liu;Jiamu Huang;Xinlu Li;Jia Liu;Yuxin Zhang;Kun Du .Flower-like SnO_2/graphene composite for high-capacity lithium storage[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2012(11):4917-4921.
[2] Bin Luo;Bin Wang;Xianglong Li;Yuyingjia;Minghui Liang;Linjie Zhi .Graphene-Confined Sn Nanosheets with Enhanced Lithium Storage Capability[J].Advanced Materials,2012(26):3538-3543.
[3] Shengnan Yang;Guorui Li;Qing Zhu .Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2012(8):3420-3425.
[4] Satoshi Mitani;Takaaki Tomai;Marappan Sathish .Ultrathin SnS2 Nanoparticles on Graphene Nanosheets: Synthesis, Characterization, and Li-Ion Storage Applications[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2012(23):12475-12481.
[5] Qinghong Wang;Lifang Jiao;Yan Han .CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2011(16):8300-8304.
[6] HASSOUN J;PANERO S;MULAS G et al.An Electrochemi-cal Investigation of a Sn-Co-C Ternary Alloy as a Negative Electrode in Li-ion Batteries[J].Journal of Power Sources,2007,171:928-931.
[7] Jusef Hassoun;Mario Wachtler;Margret Wohlfahrt-Mehrens;Bruno Scrosati .Electrochemical behaviour of Sn and Sn-C composite electrodes in LiBOB containing electrolytes[J].Journal of Power Sources,2011(1):349-354.
[8] Yi-Ruei Jhan;Jenq-Gong Duh;Su-Yueh Tsai .Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction[J].Diamond and Related Materials,2011(3):413-417.
[9] KIM Y G;YOON Y S;Shin D W .Fabrication of Sn/SnO2 Composite Powder for Anode of Lithium Ion Battery by Aerosol Flame Deposition[J].Journal of Analytical and Ap-plied Pyrolysis,2009,85:557-560.
[10] GEIM A K .Graphene:Status and Prospects[J].SCIENCE,2009,324:1530-1534.
[11] Dan Li;Richard B. Kaner .Graphene-Based Materials[J].Science,2008(5880):1170-1171.
[12] Shubin Yang;Xinliang Feng;Xinchen Wang .Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions[J].Angewandte Chemie,2011(23):5339-5343.
[13] Guoxiu Wang;Xiaoping Shen;Jane Yao .Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J].Carbon,2009(8):2049-2053.
[14] Stoller MD;Park SJ;Zhu YW;An JH;Ruoff RS .Graphene-Based Ultracapacitors[J].Nano letters,2008(10):3498-3502.
[15] Kun Chang;Zhen Wang;Guochuang Huang;He Li;Weixiang Chen;Jim Yang Lee .Few-layer SnS_2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode[J].Journal of Power Sources,2012(Mar.1):259-266.
[16] Chang, K.;Chen, W. .L -Cysteine-assisted synthesis of layered MoS_2/graphene composites with excellent electrochemical performances for lithium ion batteries[J].ACS nano,2011(6):4720-4728.
[17] FANG Xiang-peng;HUA Chun-xiu;WU Cheng-ren et al.Synthesis and Electrochemical Performance of Graphene-like WS2[J].Chemistry-A European Journal,2013,19:5694-5700.
[18] Wang XR;Tabakman SM;Dai HJ .Atomic layer deposition of metal oxides on pristine and functionalized graphene[J].Journal of the American Chemical Society,2008(26):8152-8153.
[19] Hong Guo;Rui Mao;Xiangjun Yang;Shixiong Wang;Jing Chen .Hollow nanotubular SnO_2 with improved lithium storage[J].Journal of Power Sources,2012(Dec.1):280-284.
[20] Jiantao Zai;Kaixue Wang;Yuezeng Su;Xuefeng Qian;Jiesheng Chen .High stability and superior rate capability of three-dimensional hierarchical SnS_2 microspheres as anode material in lithium ion batteries[J].Journal of Power Sources,2011(7):3650-3654.
[21] Satoshi Mitani;Takaaki Tomai;Marappan Sathish .Ultrathin SnS2 Nanoparticles on Graphene Nanosheets: Synthesis, Characterization, and Li-Ion Storage Applications[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2012(23):12475-12481.
[22] HUMMERS W S;OFFEMAN R E .Preparation of Graphitic Oxide[J].Journal of the American Chemical Society,1958,80:1339.
[23] Jie Xiao;Daiwon Choi;Lelia Cosimbescu .Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries[J].Chemistry of Materials: A Publication of the American Chemistry Society,2010(16):4522-4524.
[24] KIM H S;CHUNG Y H;KANG S H et al.Electrochemical Behavior of Carbon-Coated SnS2 for Use as the Anode in Lithium-ion Batteries[J].Electrochimica Acta,2009,54:3606-3610.
[25] KIM T J;KIRN C;SON D et al.Novel SnS2-Nanosheet Ano-des for Lithium-ion Batteries[J].Journal of Power Sources,2007,167:529-535.
[26] Julien C.;Perezvicente C. .VIBRATIONAL STUDIES OF LITHIUM-INTERCALATED SNS2[J].Solid state ionics,1996(3/4):337-343.
[27] Le-Sheng Zhang;Ling-Yan Jiang;Hui-Juan Yan .Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,2010(26):5462-5467.
[28] Kun Chang;Wei-xiang Chen;He Li;Hui Li .Microwave-assisted synthesis of SnS_2/SnO_2 composites by L-cysteine and their electrochemical performances when used as anode materials of Li-ion batteries[J].Electrochimica Acta,2011(7):2856-2861.
[29] MIURA K;YAMADA A;TANAKA M .Electric States of Spi-nel LixMn2O4 as a Cathode of the Rechargeable Battery[J].Electrochimica Acta,1996,41:249-256.
[30] Jung;wook Seo;Jung;tak Jang;Seung;won Park;Chunjoong Kim;Byungwoo Park;Jinwoo Cheon .Two-dimensional Sns_2 Nanoplates With Extraordinary High Discharge Capacity For Lithium Ion Batteries[J].Advanced Materials,2008(22):4269-4273.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%