欢迎登录材料期刊网

材料期刊网

高级检索

结合化学气相渗透( CVI)和聚合物先驱体浸渍裂解( PIP)工艺制备出炭纤维增强碳基( C/C)、炭纤维增强碳ˉ碳化硅基( C/CˉSiC)和炭纤维增强碳ˉ硅ˉ锆ˉ氧( C/CˉSiˉZrˉO)复合材料,并对其微观形貌、物相结构、力学性能和导热性能进行测试和表征。结果表明,C/CˉSiˉZrˉO复合材料在外部载荷作用下,纤维脱黏和纤维拔出等应力释放效应显著,弯曲强度优于C/C和C/CˉSiC复合材料;此外,C/C复合材料基体热解炭的导热系数较高,复合材料孔隙率小,结构缺陷较少,声子的平均自由程较长,因此具有较高的导热系数(水平方向69.09 W/(m·K),垂直方向25.28 W/(m·K))。

Carbon fiberˉreinforced carbon composites (C/C), carbon fiber reinforcedˉcarbon and silicon carbide binary matrix composites (C/CˉSiC) and carbon fiber reinforced carbonˉsiliconˉzirconiumˉoxygen matrix composites (C/CˉSiˉZrˉO) were preˉ pared through a combination of chemical vapor infiltration ( CVI) and polymer impregnation pyrolysis. The microscopic morpholoˉ gy, phase structure, mechanical properties and thermal conductivity of the C/C, C/CˉSiC and C/CˉSiˉZrˉO composites were invesˉ tigated by SEM, XRD, EDA and laser flash thermal conductive measurements. Results showed that the flexural strength of the C/CˉSiˉZrˉO composites was higher than that of the C/C and the C/CˉSiC composites, which can be ascribed to their energy absorpˉ tion mechanisms, such as fiber debonding and pullˉout from the matrix. The C/C composites possessed the highest thermal conducˉ tivity (69. 09 W/(m·K) in the parallel direction and 25. 28 W/(m·K) in the vertical direction), which can be accounted for by the high thermal conductivity of the pyrocarbon matrix, a low porosity of the composites, a long phonon mean free path and fewer structural defects.

参考文献

[1] 吉洪亮,张长瑞,周新贵,曹英斌.多孔C/SiC复合材料的制备及其性能[J].新型炭材料,2011(02):145-150.
[2] 焦健,史一宁,邱海鹏,孙明,李秀倩,罗京华.高性能连续碳纤维增强碳化硅复合材料的制备及其高温力学性能的研究[J].功能材料,2011(z3):401-404.
[3] 迟伟东,沈曾民,张学军,刘辉,于建民.由炭布制备C/C复合材料工艺及性能的研究[J].新型炭材料,2001(04):55-57.
[4] Nathan S. Jacobson;Donald M. Curry .Oxidation micro structure studies of reinforced carbon/carbon[J].Carbon: An International Journal Sponsored by the American Carbon Society,2006(7):1142-1150.
[5] Wu T M;Wei W C;Hsu S .On the oxidation kinetics and mechanisms of various SiCˉcoated composites[J].CARBON,1991,29(08):1257-1264.
[6] Labruquere S;Blanchard H;Pailler R .Enhancement of the oxiˉ dation resistance of interfacial area in C/C composites. Part I:Oxidation resistance of BˉC, SiˉBˉC and SiˉC coated carbon fiˉ bres[J].Journal of the European Ceramic Society,2002,22:1001-1009.
[7] 来忠红,方海涛,左昕,全在昊,孟松鹤,朱景川.炭/炭复合材料表面Mo-Si熔浆涂层中剩余Al对其1370℃抗氧化性能的影响[J].新型炭材料,2013(03):222-227.
[8] Yangbao QIAN;Weigang ZHANG;Min GE .Frictional response of a novel C/C-ZrB2-ZrC-SiC composite under simulated braking[J].Journal of Advanced Ceramics,2013(2):157-161.
[9] Sun M;Shi Y M;Qiu H P.Studies of flexural strength of ceramic matrix composite component prepared by PIP process[J].RARE METAL MATERIALS AND ENGINEERING,2011(z1):631-634.
[10] 余煜玺,李效东,陈国明,曹峰,冯春祥.含铝碳化硅纤维耐高温性能[J].硅酸盐学报,2004(07):812-815.
[11] Chen M W;Qiu H P;Jiao J et al.Preparation of high perˉ formance SiCf/SiC composites through PIP process[J].Key Engineering Materials,2013,544:43-47.
[12] Takeda M;Kagawa Y;Mintsuno S et al.Strength of a HiˉNiˉ calonTM/siliconˉcarbideˉmatrix composite fabricated by the multiple polymer infiltrationˉpyrolysis process[J].Journal of the American Ceramic Society,1999,82(06):1579-1581.
[13] Sacks MD;Wang CA;Yang ZH;Jain A .Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors[J].Journal of Materials Science,2004(19):6057-6066.
[14] Yong-Jun Chen;Jian-Bao Li;Qiang-Min Wei .Preparation and growth mechanism of TaC_x whiskers[J].Journal of Crystal Growth,2001(3/4):244-250.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%