欢迎登录材料期刊网

材料期刊网

高级检索

利用基于有限元的软件COMSOL Muhiphysics对多晶硅定向凝固过程进行了一系列二维数值模拟,研究了勾形磁场(CMF)对多晶硅定向凝固过程的影响.模拟分别在线圈电流设为0A、10 A、20A、30 A和40A的情况下进行.结果表明:CMF能有效抑制熔体的对流,特别是对坩埚侧壁附近的熔体.CMF可以影响结晶时的固液界面,使结晶初期凸形结晶界面变得平滑.电流从0A逐渐均匀增加到40A时,施加于熔体上的磁场也逐渐增加,熔体的最高流速逐渐减小,而且最高流速的减小量呈现出先增加后减小的趋势.

参考文献

[1] A.T. Kuliev;N.V. Durnev;V.V. Kalaev.Analysis of 3D unsteady melt flow and crystallization front geometry during a casting process for silicon solar cells[J].Journal of Crystal Growth,20071(1):236-240.
[2] A. Popescu;D. Vizman.Numerical study of the influence of melt convection on the crucible dissolution rate in a silicon directional solidification process[J].International Journal of Heat and Mass Transfer,201125/26(25/26):5540-5544.
[3] 彭岚;龚欢.静态磁场对分离结晶中熔体流动的影响[J].中国有色金属学报(英文版),2015(3):936-943.
[4] D. Vizman;C. Tanasie.Novel method for melt flow control in unidirectional solidification of multi-crystalline silicon[J].Journal of Crystal Growth,2013Jun.1(Jun.1):1-8.
[5] Zhao Chen;XiaoLi Wen;ChangLe Chen.Fluid flow and microstructure formation in a rotating magnetic field during the directional solidification process[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20101/2(1/2):395-401.
[6] C. Tanasie;D. Vizman;J. Friedrich.Numerical study of the influence of different types of magnetic fields on the interface shape in directional solidification of multi-crystalline silicon ingots[J].Journal of Crystal Growth,20111(1):293-297.
[7] F.-M. Kiessling;F. Biellesfeld;N. Dropka;Ch. Frank-Rotsch;M. Muller;P. Rudolph.Characterization of mc-Si directionally solidified in travelling magnetic fields[J].Journal of Crystal Growth,2012:81-86.
[8] K. Dadzis;K. Niemietz;O. Paetzold;U. Wunderwald;J. Friedrich.Non-isothermal model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field[J].Journal of Crystal Growth,2013Jun.1(Jun.1):145-156.
[9] Xiaoming Zhou;Hulin Huang.Numerical simulation of Cz crystal growth in rotating magnetic field with crystal and crucible rotations[J].Journal of Crystal Growth,20121(1):166-170.
[10] V. Galindo;K. Niemietz;O. Paetzold;G. Gerbeth.Numerical and experimental modeling of VGF-type buoyant flow under the influence of traveling and rotating magnetic fields[J].Journal of Crystal Growth,2012:30-34.
[11] Tatyana P. Lyubimova;Arne Croell;Peter Dold;Oleg A. Khlybov;Irina S. Fayzrakhmanova.Time-dependent magnetic field influence on GaAs crystal growth by vertical Bridgman method[J].Journal of Crystal Growth,20041/3(1/3):404-410.
[12] Xianrong Cen;Y.S. Li;Jiemin Zhan.Three dimensional simulation of melt flow in Czochralski crystal growth with steady magnetic fields[J].Journal of Crystal Growth,20121(1):135-141.
[13] Negrila, Radu Andrei;Popescu, Alexandra;Vizman, Daniel.Numerical and experimental modeling of melt flow in a directional solidification configuration under the combined influence of electrical current and magnetic field[J].European Journal of Mechanics, B. Fluids,2015:147-159.
[14] Vizman D.;Grabner O.;Muller G..3D numerical simulation and experimental investigations of melt flow in an Si Czochralski melt under the influence of a cusp-magnetic field[J].Journal of Crystal Growth,20024(4):545-550.
[15] Yoo Cheol Won;Koichi Kakimoto;Hiroyuki Ozoe.Transient three-dimensional numerical computation for unsteady oxygen concentration in a silicon melt during a Czochralski process under a cusp-shaped magnetic field[J].Journal of Crystal Growth,20014(4):622-630.
[16] Bok-Cheol Sim;In-Kyoo Lee;Kwang-Hun Kim;Hong-Woo Lee.Oxygen concentration in the Czochralski-grown crystals with cusp-magnetic field[J].Journal of Crystal Growth,20053/4(3/4):455-459.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%