欢迎登录材料期刊网

材料期刊网

高级检索

采用基于密度泛函理论的第一性原理方法研究了二元的fcc-HfN和三元分散相fcc-Hf1-xSi,N及fcc-HfSixN1-x的原子结构、电子结构与弹性性质.计算提供了HfN和置换固溶体Hf1-xSi,N及 HfSixN1-x的晶格常数、内聚能、弹性常数和电子态密度.结果表明,HfN及其固溶体Hf1-xSixN、HfSix N1-x都呈现出金属性,并且其加Si后更具金属性,HfSix N1-x的力学性能有所改善,Hf1-xSixN的综合性能(除G44基本不变外)有所下降,随着x的增大这种趋势越发明显,这些是由于电子结构的改变引起的.

参考文献

[1] Nimmagada R;Bunshah R F .High rate deposition of hafnium nitride by activated reactive evaporation(ARE)[J].Thin Solid Films,1979,63(02):327.
[2] Nowak R.;Li CL. .EVALUATION OF HFN THIN FILMS CONSIDERED AS DIFFUSION BARRIERS IN THE AL/HFN/SI SYSTEM[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,1997(1/2):297-303.
[3] Nowak R.;Maruno S. .SURFACE DEFORMATION AND ELECTRICAL PROPERTIES OF HFN THIN FILMS DEPOSITED BY REACTIVE SPUTTERING[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(1/2):226-237.
[4] Yao Chen;Tapas Laha;Kantesh Balani .Nanomechanical properties of hafnium nitride coating[J].Scripta materialia,2008(12):1121-1124.
[5] Staia M H;Bhat DG;Puchi-Cabrera ES et al.Characterization of chemical vapor deposited HfN multilayer coatings on cemented carbide cutting tools[J].Wear,2006,261(05):540.
[6] Flink A;Larsson T;Sjolen J;Karlsson L;Hultman L .Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability[J].Surface & Coatings Technology,2005(5/6):1535-1542.
[7] Vaz F;Rebouta L;Goudeau P et al.Characterisation of Ti1-xSixNy nanocomposite films[J].Surface and Coatings Technology,2000,133-134:307.
[8] Vaz F;Rebouta L;Almeida B et al.Structural analysis of Ti1-xSixNy nanocomposite films prepared by reactive magnetron sputtering[J].Surface and Coatings Technology,1999,120-121:166.
[9] Hao SQ;Delley B;Veprek S;Stampfl C .Superhard nitride-based nanocomposites: Role of interfaces and effect of impurities[J].Physical review letters,2006(8):6102-1-6102-4-0.
[10] Hao SQ;Delley B;Stampfl C .Structure and properties of TiN(111)/SixNy/TiN(111) interfaces in superhard nanocomposites: First-principles investigations[J].Physical review, B. Condensed matter and materials physics,2006(3):5402-1-5402-12-0.
[11] Zhang RF;Veprek S .Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSxNy solid solutions studied by ab initio calculation and thermodynamic modeling[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2008(8):2264-2275.
[12] Jeong J J;Hwang S K;Lee C M .Hardness and adhesion properties of HfN/Si3 N4 and NbN/Si3 N4 multilayer coatings[J].Materials Chemistry and Physics,2002,77(01):27.
[13] Kresse G;Hafner J .Ab initio Hellmann-Feynman molecular dynamics for liquid metals[J].J Nor-Cryst Solids,1993,158:956.
[14] Kresse G;Hafner J .Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J].Physical Review B:Condensed Matter,1994,49:14251.
[15] G. Kresse;J. Furthmuller .Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996(1):15-50.
[16] Kresse G.;Furthmuller J. .EFFICIENT ITERATIVE SCHEMES FOR AB INITIO TOTAL-ENERGY CALCULATIONS USING A PLANE-WAVE BASIS SET[J].Physical Review.B.Condensed Matter,1996(16):11169-11186.
[17] Kresse G.;Joubert D. .From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review.B.Condensed Matter,1999(3):1758-1775.
[18] Perdew J P;Chevary J A;Vosko S H et al.Atoms,molecules,solids,and surfaces:Applicatiors of the generalized gradient approximation for exchange and correlation[J].Physical Review B:Condensed Matter,1992,46(11):6671.
[19] Vanderbilt D .Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J].Physical Review B:Condensed Matter,1990,41(11):7892.
[20] Kresse G;Hafner J .Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J].Journal of Physics:Condensed Matter,1994,40(06):8245.
[21] 基泰尔 C;项金钟;吴兴惠.固体物理导论[M].北京:化学工业出版社,2005:38.
[22] Stampfl C.;Asahi R.;Freeman AJ.;Mannstadt W. .Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations - art. no. 155106[J].Physical Review.B.Condensed Matter,2001(15):155106-1-155106-11.
[23] Xin T;Li Y Q;Liu X J et al.Ab initio study of the structural and mechanical properties of Hf-Si-N[J].Advances in Materials Research,2010,139-141:22.
[24] Xiao-Jia Chen;Viktor V. Struzhkin;Zhigang Wu;Maddury Somayazulu;Jiang Qian;Simon Kung;Axel Norlund Christensen;Yusheng Zhao;Ronald E. Cohen;Ho-kwang Mao;Russell J. Hemley .Hard superconducting nitrides[J].Proceedings of the National Academy of Sciences of the United States of America,2005(9):3198-3201.
[25] Zhao, EJ;Wu, ZJ .Electronic and mechanical properties of 5d transition metal mononitrides via first principles[J].Journal of Solid State Chemistry,2008(10):2814-2827.
[26] 张亮 .Ti-Si-N类超硬表面的结构和力学性能的第一性原理计算[D].内蒙古科技大学,2009.
[27] Yang Q.;Lengauer W. .Hardness and elastic properties of Ti(C_xN_(1-x)), Zr(C_xN_(1-x)) and Hf(C_xN_(1-x))[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2000(1/2):L5-L9.
[28] Jhi Seung-Hoon;Ihm Jisoon;Steven G Louie et al.Electronic mechanism of hardness enhancement in transitionmetal carbonitrides[J].Nature,1999,399:132.
[29] Pugh S F .Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J].Philosophical Magazine,1954,45:823.
[30] Chen K;Zhao L .Elastic properties, thermal expansion coefficients and electronic structures of Ti0.75X0.25C carbides[J].The journal of physics and chemistry of solids,2007(9):1805-1811.
[31] Jhi SH.;Cohen ML.;Ihm J.;Louie SG. .Vacancy hardening and softening in transition metal carbides and nitrides[J].Physical review letters,2001(15):3348-3351.
[32] 李承斌 .过渡金属及其碳、氮化物力学性质的第一性原理研究[D].武汉大学,2005.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%