欢迎登录材料期刊网

材料期刊网

高级检索

利用分离式霍普会森压杆(SHPB)研究了40%体积分数的SiC_P/2024Al复合材料和基体材料2024Al在不同应变率下的动态压缩性能.在高应变率动态压缩时该复合材料与2024Al均表现出应变率不敏感,复合材料屈服应力高于2024Al;与2024Al的应变硬化性能不同,复合材料表现出应变软化性能.利用扫描电镜(SEM)观察动态压缩后复合材料试件的微观组织,发现试件内部出现一些孔洞、微裂纹以及一些增强颗粒的破碎等损伤现象,并且在较高应变率下基体呈现出明显的热软化共至发生局部熔化,由此判断,在高应变率下SiC_P/2024Al复合材料宏观应变软化的机制为内部损伤及基体热软化.将SiC_P/2024Al复合材料与2024Al经400℃下烧蚀3 h后自由冷却至室温,利用SHPB再次进行测试,与烧蚀前的测试结果相比,2024Al的性能明显下降,而复合材料的件能变化较小,表现出比基体材料更好的抗高温稳定性能.

Dynamic compressive properties of a 40 vol%SiC_P/2024Al composite and its matrix 2024Al were studied at various strain rates using split Hopkinson pressure bar (SHPB). The flow stress of the composite and 2024Al is strain-rate insensitive above 1500 s~(-1), and the composite's yield strength is higher than that of 2024Al. Different from the strain-hardening property of 2024Al, a strain-softening performance is found in the compressive properties of the composite. Microstructure of the compressed composite specimens was characterized by SEM, some cavities, micro-cracks and particle fractures were observed in the specimens, and the matrix of the composite was softened, even melted by heat at higher strain rates. The strain-softening performance of the SiC_P/2024Al composite at high strain rates is due to the inner damage and the heat softening. After being baked 3 h at 400℃ and self-cooling to the room temperature, the specimens of the composite and 2024Al were tested by SHPB. Compared to the original results, the mechanical properties of the matrix material are decreased significantly, but the property change of the composite is not obvious. The SiC_P/2024Al composite presents a much better mechanical property stability withstanding high temperature than the matrix.

参考文献

[1] 崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2006(2):3-7.Cui Yan.Aerospace applications of silicon carbide particulate reinforced aluminum matrix composites[J].Journal of Materials Engineering,2006(2):3-7.
[2] Li Y,Ramesh K T,Chin E S C.The compressive viscoplastic response of an A359/SiC_P metal matrix composites and of the A359 aluminum alloy matrix[J].International Journal of Solids and Structures,2000,37(51):7547-7642.
[3] Dai L H,Liu L F,Bai Y L,Effect of particle size on the formation of adiabatic shear band in particle reinforced metal matrix composites[J].Materials Letters,2004,58(11):177-1776.
[4] Tjong S C,Ma Z Y,Li R K Y,The dynamic mechanical response of Al_2O_3 and TiB_2 participate reinforced aluminum matrix composites produced by in situ reaction[J].Materials Letters,1999,38(1):39-44.
[5] 宫能平,周元鑫,夏源明.应变率对SiC颗粒增强铝基复合材料拉伸性能的影响[J].力学季刊,2000.2I(4):415-420.Gong Nengping,Zhou Yuanxin,Xia Yuanming.Effect of strain rate on tensile behavior of SiC_P/Al MMC[J].Chinese Quarterly of Mechanics,2000,21(4),415-420.
[6] Razaghian A,Yu D,Chandra T.Fracture behaviour of a SiC-particle-reinforced aluminum alloy at high temperature[J].Composites Science and Technology,1998,58(2):293-298.
[7] 康炘蒙,程小全,张继套,等.高体积分数SiC_P/Al复合材料的拉伸、压缩与弯曲特性[J].复合材料学报,2008,25(3):127-131.Kang Xinmeng,Cheng Xiaoquan,Zhang Jikui,et al.Tensile,compressive and flexible properties of high volume fraction SiC_P/Al composites[J].Acta Materiae Compositae Sinica,2008,25(3):127-131.
[8] Tan Z H,Pang B J,Gai B Z,et al.The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites[J].Materials Letters,2007,61 (23/24):4606-4609.
[9] Tan Z H,Pang B J,Qin D T,et al.The compressive properties of 2024Al matrix composites reinforced with high content SiC particles at various strain rates[J].Materials Science and Engineering A,2008,489(1/2):302-309.
[10] Zhu Dezhi,Wu Gaohui,Chen Guoqin,Zhang Qiang.Dynamic deformation behavior of a high reinforcement content TiB_2/Al composite at high strain rates[J].Materials Science and Engineering A,2008,487(1/2):538-540.
[11] Zhang Q,Chen G Q,Wu G H,et al.Property characteristics of a AlN_P/Al composite fabricated by squeeze casting technology[J].Materials Letters,2003,57(8),1453-1458.
[12] 王礼立.应力波基础[M].2版.北京:国防工业出版社,2005:52-60.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%