欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleeble-1500热模拟压缩试验获得了高强硼钢在880~1000℃、0.01~10 s1、最大变形55%条件下的真应力-真应变曲线,通过对试验数据的处理和分析,研究了高强硼钢在试验条件下的软化机制及动态再结晶临界条件.结果表明:利用真应力-真应变曲线来判断高强硼钢的软化机制存在宏观判断误区,通过分析θ-σ曲线和晶粒金相可以发现,高强硼钢在本文变形条件下均可以发生动态再结晶;通过lnθ-ε曲线拐点及-a(lnθ)/Oε-ε曲线最小值判据可以确定高强硼钢动态再结晶临界应变,进而通过σ-ε曲线可以获得临界应力;随变形温度降低或应变速率提高,动态再结晶临界应力或应变值随之提高,且临界应力/应变与峰值应力/应变之间存在如下关系:σc=0.92σp,εc=0.57εp;临界应力/应变与变形条件的关系分别为:σc=17.4048lnZ-450.2409,εc =0.0195lnZ-0.4710.

参考文献

[1] P.C. Chung;Yoonjin Ham;Sanghoon Kim;Jeongho Lim;Changhee Lee.Effects of post-weld heat treatment cycles on microstructure and mechanical properties of electric resistance welded pipe welds[J].Materials & design,2012Feb.(Feb.):685-690.
[2] P. Yan;O¨. E. Gu¨ngor;P. Thibaux.Induction welding and heat treatment of steel pipes: evolution of crystallographic texture detrimental to toughness[J].Science and Technology of Welding and Joining,20102(2):137-141.
[3] Yan, P.;Güng?r, O.E.;Thibaux, P.;Liebeherr, M.;Bhadeshia, H.K.D.H..Tackling the toughness of steel pipes produced by high frequency induction welding and heat-treatment[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201129/30(29/30):8492-8499.
[4] 王军;毕宗岳;张峰;王燕;李周波;白鹤;王亮;李远征.HFW焊接套管的热张力减径工艺研究[J].钢管,2013(4):16-26.
[5] M. Merklein;J. Lechler.Investigation of the thermo-mechanical properties of hot stamping steels[J].Journal of Materials Processing Technology,20061/3(1/3):452-455.
[6] A. BARCELLONA;A. BARCELLONA;D. PALMERI;D. PALMERI.Effect of Plastic Hot Deformation on the Hardness and Continuous Cooling Transformations of 22MnB5 Microalloyed Boron Steel[J].Metallurgical and Materials Transactions. A, physical metallurgy and materials science,20095(5):1160-1174.
[7] 马宁;申国哲;张宗华;孙宏图;胡平.高强度钢板热冲压材料性能研究及在车身设计中的应用[J].机械工程学报,2011(8):60-65.
[8] J. Lin;T.A. Dean.Modelling of microstracture evolution In hot forming using unified constitutive equations[J].Journal of Materials Processing Technology,20052/3(2/3):354-362.
[9] 周靖;王宝雨;徐伟力;黄鸣东;易生虎;校文超.耦合损伤的22MnB5热变形本构模型[J].北京科技大学学报,2013(11):1450-1457.
[10] Sang-Hyun CHO;Ki-Bong KANG;John J. JONAS.The Dynamic, Static and Metadynamic Recrystallization of a Nb-microalloyed Steel[J].ISIJ International,20011(1):63-69.
[11] 邹天来 .节约型X70级管线钢的组织控制与工艺开发[D].东北大学,2008.
[12] Taylor, A.S.;Hodgson, P.D..Dynamic behaviour of 304 stainless steel during high Z deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20119(9):3310-3320.
[13] Wen-Feng Zhang;Xiao-Li Li;Wei Sha;Wei Yan;Wei Wang;Yi-Yin Shan;Ke Yang.Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:199-208.
[14] 梁后权;郭鸿镇;宁永权;姚泽坤;赵张龙.基于软化机制的TC18钛合金本构关系研究[J].金属学报,2014(7):871-878.
[15] E.I.POLIAK;J.J.JONAS.A ONE-PARAMETER APPROACH TO DETERMINING THE CRITICAL CONDITIONS FOR THE INITIATION OF DYNAMIC RECRYSTALLIZATION[J].Acta materialia,19961(1):127-136.
[16] E. I. POLIAK;J. J. JONAS.Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation[J].ISIJ International,20035(5):684-691.
[17] Abbas NAJAFIZADEH;John J. JONAS.Predicting the Critical Stress for Initiation of Dynamic Recrystallization[J].ISIJ International,200611(11):1679-1684.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%