功能材料, 2012, 43(6): 767-770.
基于热力耦合模型铝合金搅拌摩擦焊接顺序优化仿真分析
董学伟 1, , 黎向锋 2, , 左敦稳 3, , 张建福","id":"a85f8b07-4c29-4d89-8916-333beb7cbd3e","originalAuthorName":"张建福"},{"authorName":"赵栋梁","id":"1c282c2b-4232-47ef-b2c5-2006e57defb7","originalAuthorName":"赵栋梁"},{"authorName":"张波萍","id":"5d0498f4-fdbc-4ab5-ba33-e0c4ba89723d","originalAuthorName":"张波萍"},{"authorName":"卢凤双","id":"98fa1808-0051-49f8-8fdc-3f13986aeb54","originalAuthorName":"卢凤双"},{"authorName":"张敬霖","id":"d7b59a57-fa55-47bb-b1b8-aaae227fa0f5","originalAuthorName":"张敬霖"},{"authorName":"陈建刚","id":"69066416-cf4d-4895-b646-2577b744057a","originalAuthorName":"陈建刚"},{"authorName":"徐进","id":"9085ec13-23f3-48f2-a341-652070e90306","originalAuthorName":"徐进"}],"doi":"10.3969/j.issn.1005-8192.2007.03.003","fpage":"10","id":"5ebd7d9d-9a5d-46a9-8d8d-c1460592608c","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"196aef04-1ab7-4cb3-a222-e3a72448c921","keyword":"Fe-Ni合金","originalKeyword":"Fe-Ni合金"},{"id":"068f3756-1e0b-4749-9af9-309cf43f1364","keyword":"时效","originalKeyword":"时效"},{"id":"c31e47af-d67d-4c4f-960a-595b3710bcf0","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"e29896a9-2acd-413f-9543-4335386a77ff","keyword":"碳化物","originalKeyword":"碳化物"},{"id":"f8c577e4-6bd7-455b-8aa4-fa648dba0b9f","keyword":"线膨胀系数","originalKeyword":"线膨胀系数"}],"language":"zh","publisherId":"jsgncl200703003","title":"Fe-Ni基高强度低膨胀合金组织性能与时效时间的关系","volume":"14","year":"2007"},{"abstractinfo":"固体氧化物燃料电池(SOFC)是高效、洁净、全固态的电化学装置,是发展比较快的能源技术之一.本文总结了SOFC关键组件连接体材料的研究进展,详细论述了近年发展起来的金属连接体材料的研究状况,总结了目前研究比较广泛的Ni基、Fe基、Cr基连接体合金的性能特点和存在的主要问题,最后介绍了经过表面处理的Fe-Cr基合金应作为SOFC金属连接体材料的研究重点.","authors":[{"authorName":"卢凤双","id":"4edf9e7b-b0e0-43dc-aaca-f7cf2e9be1fa","originalAuthorName":"卢凤双"},{"authorName":"张建福","id":"b4a932e4-fd7d-47ad-bb3b-4ee316df9a53","originalAuthorName":"张建福"},{"authorName":"华彬","id":"c900777a-dbef-4e20-be3c-c1b8717c4142","originalAuthorName":"华彬"},{"authorName":"蒲健","id":"518b24b4-f047-43eb-86cc-3396ccc33829","originalAuthorName":"蒲健"},{"authorName":"李箭","id":"853ec093-8c7d-4e95-a2ab-26f0cafe21ca","originalAuthorName":"李箭"},{"authorName":"张敬霖","id":"a2725632-6c58-4b50-a052-f4c16235d885","originalAuthorName":"张敬霖"},{"authorName":"张建生","id":"3fc1c7c2-48de-465b-9be1-d85a4a978185","originalAuthorName":"张建生"}],"doi":"","fpage":"44","id":"6e797308-bdee-4155-92b3-9810f55166ae","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"916ffc35-e4eb-465d-a837-c2934fcec293","keyword":"固体氧化物燃料电池(SOFC)","originalKeyword":"固体氧化物燃料电池(SOFC)"},{"id":"d7af5861-6557-4a08-ad10-47d4515ba6ef","keyword":"Fe-Cr基合金","originalKeyword":"Fe-Cr基合金"},{"id":"9dfba6a6-6f27-46b8-a3ab-42f8359b6ff0","keyword":"连接体材料","originalKeyword":"连接体材料"}],"language":"zh","publisherId":"jsgncl200806012","title":"固体氧化物燃料电池连接体材料研究进展","volume":"15","year":"2008"},{"abstractinfo":"采用单质Mn、Cu、Ni、Fe粉末,通过反应烧结过程可制备 M2052合金.主要研究了烧结温度对密度、孔隙率和力学性能的影响,同时对烧结样品的相组成进行了分析.M2052合金在950℃烧结时基本为γ-MnCu固溶体,合金的密度为6.23 g/cm3,致密度为87.2%,抗弯强度达到了487 MPa,并具有良好的阻尼性能,不同频率下的阻尼性能表现稳定,损耗因子tanδ达到0.11~0.12.","authors":[{"authorName":"王铸博","id":"f58a2f1a-5d20-460e-bd0f-da01763017ee","originalAuthorName":"王铸博"},{"authorName":"卢凤双","id":"2bd89a2a-aaa8-4e0f-9c09-0b4888fc30ad","originalAuthorName":"卢凤双"},{"authorName":"吴滨","id":"df1946c2-e5d0-413c-950c-3aeb03629e54","originalAuthorName":"吴滨"},{"authorName":"徐然","id":"eb03d8e1-3fc9-428f-8a9a-4eab44cf70e4","originalAuthorName":"徐然"},{"authorName":"张建福","id":"54d3aa93-0837-44c5-80af-2a01bb3b45d8","originalAuthorName":"张建福"},{"authorName":"赵栋梁","id":"6eb0c7c0-f26a-4188-9988-3f219d377a87","originalAuthorName":"赵栋梁"},{"authorName":"罗丰华","id":"2dcc7219-6978-4bc9-9a52-cdda3c27b395","originalAuthorName":"罗丰华"}],"doi":"10.3969/j.issn.1001-9731.2016.09.041","fpage":"9211","id":"e54c558a-da26-495a-9ef9-ba21b3905ecb","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"605c201a-fc8e-4123-9c2f-c3b77b9fe513","keyword":"锰铜合金","originalKeyword":"锰铜合金"},{"id":"8abb868c-aa34-4a33-b604-3dd2ea4350b4","keyword":"阻尼能力","originalKeyword":"阻尼能力"},{"id":"9b55a0ee-64f5-4d0a-94c3-c9a879e217b3","keyword":"粉末冶金","originalKeyword":"粉末冶金"}],"language":"zh","publisherId":"gncl201609041","title":"烧结温度对粉末冶金法制备M2052阻尼合金性能的影响?","volume":"47","year":"2016"},{"abstractinfo":"系统地研究了SUS 430铁素体不锈钢在中温SOFC阴极气氛(空气)中的氧化动力学、表面氧化物特征以及表面氧化对导电行为的作用.通过750℃静态空气中的氧化实验得出氧化增重与氧化时间的动力学关系;采用\"4点法\"测量合金表面氧化膜的面比电阻(ASR);利用XRD和SEM表征表面氧化物的相结构、微观形貌及成分.实验发现,氧化动力学符合抛物线规律,并呈现出多级氧化现象;所生成的表面氧化物主要为Cr2O3和MnCr2O4;表面氧化物的ASR与测量温度之间的关系满足Arrhenius方程,并且在600~700℃之间,其斜率发生改变.结合氧化过程中的阳离子扩散、氧化物形成热力学以及半导体的导电机理对多级氧化动力学机制、氧化物相形成规律以及面比导电行为进行了理论分析.在此基础上,对SUS 430作为中温SOFC金属连接体材料的可能性做出了合理的评估.","authors":[{"authorName":"华斌","id":"e5e15f15-204a-4ceb-af33-cc106cf4aa88","originalAuthorName":"华斌"},{"authorName":"蒲健","id":"de70cd93-19dc-4cc4-9a0a-c017236bb4a4","originalAuthorName":"蒲健"},{"authorName":"张建福","id":"98236b28-9189-41f0-9cbb-15adb69eb414","originalAuthorName":"张建福"},{"authorName":"卢凤双","id":"7ee8f7f6-ff8e-4d56-8f5d-6c779d37c4ed","originalAuthorName":"卢凤双"},{"authorName":"李箭","id":"f873f64a-77cf-4092-ab4d-70c16da7f02b","originalAuthorName":"李箭"}],"doi":"","fpage":"1689","id":"122359b3-dd53-49b5-8033-db155182feaa","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5be24c06-6878-4e27-b367-3aee01cd18ab","keyword":"固体氧化物燃料电池(SOFC)","originalKeyword":"固体氧化物燃料电池(SOFC)"},{"id":"9e1d3487-277b-4f65-9f4b-85fd0d9d6052","keyword":"金属连接体","originalKeyword":"金属连接体"},{"id":"a273ecf8-f516-4f4f-95e4-6e637db0d213","keyword":"氧化动力学","originalKeyword":"氧化动力学"},{"id":"92238a90-d5b9-4966-9eab-18bf4713934b","keyword":"面比电阻(ASR)","originalKeyword":"面比电阻(ASR)"}],"language":"zh","publisherId":"gncl200810029","title":"中温SOFC金属连接体材料的氧化规律和导电行为","volume":"39","year":"2008"},{"abstractinfo":"3J33(C)马氏体时效钢是以无碳(或超低碳)铁镍马氏体为基体的时效强化型高弹性合金.采用工业电炉处理合金,高温固溶处理后,再经过4次变温循环相变,基体组织由高温固溶后220 μm的粗大等轴晶细化为15 μm左右的均匀细小晶粒.进一步时效处理后,合金抗拉强度、屈服强度、弹性极限、硬度提高10%以上,断面收缩率、断后伸长率、冲击吸收功提高30%以上.","authors":[{"authorName":"陈建刚","id":"cea3ad64-a304-4fe8-89b2-910a999c9044","originalAuthorName":"陈建刚"},{"authorName":"卢凤双","id":"7aeec0ce-42e1-460a-a510-12ff2dd9b96e","originalAuthorName":"卢凤双"},{"authorName":"张敬霖","id":"89103d27-1bef-45e0-9c5f-e6b756dfbb7f","originalAuthorName":"张敬霖"},{"authorName":"张建生","id":"cc1ac536-5920-44e4-a3d9-07769aca63f4","originalAuthorName":"张建生"},{"authorName":"张建福","id":"d8affbcd-9145-4b3d-b694-584c4eb03fb6","originalAuthorName":"张建福"}],"doi":"","fpage":"16","id":"2bd20e43-697e-4fbb-aea7-49e856eb655e","issue":"2","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"0ef8a866-c20d-44f7-89fa-ad8cb6f7a8b8","keyword":"马氏体时效钢","originalKeyword":"马氏体时效钢"},{"id":"940fb011-7b51-4b62-bc61-9a22353de78c","keyword":"变温循环相变","originalKeyword":"变温循环相变"},{"id":"4153725f-6c10-40c0-9d94-f9e0eceffcae","keyword":"时效","originalKeyword":"时效"},{"id":"b759ee89-54f2-4127-89c2-2ce4a3311596","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsgncl201002005","title":"循环热处理对3J33(C)马氏体时效钢组织、性能的影响","volume":"17","year":"2010"},{"abstractinfo":"18Ni马氏体时效钢是以无碳(或超低碳)铁镍马氏体为基体的,主要是经时效产生时效强化的高强度钢.本文简要概述了18Ni马氏体时效钢的发展过程,介绍了固溶强化、相变强化、时效强化、细晶强化、形变强化方法和发展趋势.","authors":[{"authorName":"陈建刚","id":"f9892fc9-28c4-46b1-baf7-cce07db903d8","originalAuthorName":"陈建刚"},{"authorName":"张建福","id":"a631c138-e191-4ff0-8d27-8dd233c9f356","originalAuthorName":"张建福"},{"authorName":"卢凤双","id":"186bbdda-38cb-4f10-8c6d-ea97fef5549a","originalAuthorName":"卢凤双"},{"authorName":"张敬霖","id":"f0566652-5c00-47c4-a532-bfd80d5aa028","originalAuthorName":"张敬霖"},{"authorName":"张建生","id":"b42585f1-4343-4595-b3bc-9fa8499dc09a","originalAuthorName":"张建生"}],"doi":"","fpage":"46","id":"32a08a27-8961-4ff4-aeae-5b2039f272aa","issue":"4","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"c8673b56-303a-43d7-93a4-c85eb3385af0","keyword":"马氏体时效钢","originalKeyword":"马氏体时效钢"},{"id":"17a2b60c-e1e3-459b-b28f-543ae625901a","keyword":"强化方法","originalKeyword":"强化方法"},{"id":"6921c355-3e0e-4469-88bc-19a5d3886a91","keyword":"固溶强化","originalKeyword":"固溶强化"},{"id":"ec7706ce-e009-4862-8e17-decd20092792","keyword":"相变强化","originalKeyword":"相变强化"},{"id":"75644b9c-daa2-43d9-8343-0ecb92f88515","keyword":"时效强化","originalKeyword":"时效强化"},{"id":"7bbf80b6-5977-4856-bfe9-f3db79bab4a9","keyword":"细晶强化","originalKeyword":"细晶强化"},{"id":"e29892ae-2575-4e31-a3a7-d45907041ee1","keyword":"形变强化","originalKeyword":"形变强化"}],"language":"zh","publisherId":"jsgncl200904013","title":"18Ni马氏体时效钢强化方法概述","volume":"16","year":"2009"},{"abstractinfo":"采用性能测试和显微组织分析手段,探讨了高强度低膨胀Fe-Ni合金丝材时效处理对合金膨胀系数及强度的影响规律.试验结果表明,采用较高温度时效(475℃),能够使碳化物能够呈弥散状析出,将有利于合金膨胀系数的控制,及合金强度的提高;而较低的时效温度(425℃)下,碳化物呈不均匀状析出,合金强化效果不明显,同时不利于膨胀系数的控制.","authors":[{"authorName":"张建福","id":"672859a0-9c0c-482e-a96e-6a3660fffb28","originalAuthorName":"张建福"},{"authorName":"徐进","id":"343b2d9a-f061-44b8-8124-85d809d94622","originalAuthorName":"徐进"},{"authorName":"王新林","id":"04920dff-abeb-4f23-9895-1147f1a16598","originalAuthorName":"王新林"},{"authorName":"陈建刚","id":"499bb7c0-853d-4b71-b294-35d5f4cde9b1","originalAuthorName":"陈建刚"},{"authorName":"张建生","id":"b23661cc-85b0-4c3b-9c58-5422044de0ad","originalAuthorName":"张建生"}],"doi":"","fpage":"1892","id":"33444203-bec6-4435-b771-a3c997eac35b","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d7be6b5f-7e52-46ff-adda-0c7ded4a4a39","keyword":"Fe-Ni合金丝材","originalKeyword":"Fe-Ni合金丝材"},{"id":"68a614ea-4c1d-4b77-9bb1-0fdd00127992","keyword":"高强度","originalKeyword":"高强度"},{"id":"9aa5b463-0008-4075-900c-c9098dfe175e","keyword":"时效","originalKeyword":"时效"}],"language":"zh","publisherId":"gncl200512024","title":"高强度Fe-Ni膨胀合金丝材时效工艺研究","volume":"36","year":"2005"},{"abstractinfo":"金属阻尼材料是一种用来减振和降噪的结构功能一体化材料,利用其制造相关振动源构件,可以有效地解决机械制造及相关工程领域中的振动和噪声问题.介绍了近年发展起来的新型MnCu可变形M2052 (Mn-20Cu-5Ni-2Fe)合金的阻尼机理、研究开发过程以及应用前景,并提出该合金的一些研究方向.","authors":[{"authorName":"卢凤双","id":"5d740cc9-e250-40e5-8448-b02c0f5469dc","originalAuthorName":"卢凤双"},{"authorName":"芮永岭","id":"a937ff7f-9d1c-4bdd-8a7f-c420ce85fe59","originalAuthorName":"芮永岭"},{"authorName":"田宇鹏","id":"c330fa57-ec72-44d6-9bb3-2b25867e2b8f","originalAuthorName":"田宇鹏"},{"authorName":"张建福","id":"3e4abe01-b24d-4bde-a8f1-1a10cf95020f","originalAuthorName":"张建福"},{"authorName":"冯强","id":"43da034b-2d7d-4621-aa66-7c5e9e441540","originalAuthorName":"冯强"},{"authorName":"赵栋梁","id":"16ab2bdd-8481-451b-8028-e30f18068d7d","originalAuthorName":"赵栋梁"}],"doi":"","fpage":"43","id":"60f3c3db-30e1-4dc4-a863-57a4fdc6b6e3","issue":"4","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"75952614-8fc9-4674-bc4e-4b6067e67006","keyword":"M2052","originalKeyword":"M2052"},{"id":"472ed80c-83ed-427b-9af6-e7f88e10bdf3","keyword":"阻尼合金","originalKeyword":"阻尼合金"},{"id":"1143d039-84be-4086-add7-9679d4fe67e1","keyword":"内耗","originalKeyword":"内耗"}],"language":"zh","publisherId":"jsgncl201304010","title":"M2052高阻尼合金的研究及应用","volume":"20","year":"2013"},{"abstractinfo":"用感应溶炼并浇铸制备了名义成份为Ni50Mn27Ga23的合金.用交流磁化率测定了合金的相变温度和居里温度,用动态电阻应变仪测试了合金在不同温度及不同磁场强度下的相变应变和磁诱导应变.研究的结果表明:相变应变具有各向异性,外磁场可显著增大相变应变;不同温度下磁场诱导的应变具有不同的特征,温度越低磁诱导应变越大,但使应变饱和所需的磁场也越高,在个别温度点伴随应变突变.磁场的训练不会显著提高磁诱导应变,相反可使可恢复应变减少.","authors":[{"authorName":"李健靓","id":"f2e6b5a2-e9f8-47ef-b8f4-ff9f5424a716","originalAuthorName":"李健靓"},{"authorName":"赵韦人","id":"d0590e0c-28b4-4a06-9fcf-d2fea5974288","originalAuthorName":"赵韦人"},{"authorName":"张羊换","id":"bbc3389f-025f-41ce-9c82-09bc72d71db9","originalAuthorName":"张羊换"},{"authorName":"张建福","id":"71d98e90-a52b-4cff-b468-67b1ba103408","originalAuthorName":"张建福"},{"authorName":"祁焱","id":"74155295-90ec-4644-bf90-2bc8f0fd1596","originalAuthorName":"祁焱"},{"authorName":"王新林","id":"983cb343-a802-4610-8018-0cbaf844696a","originalAuthorName":"王新林"}],"doi":"","fpage":"398","id":"6b211dd5-930d-4a17-8689-d70ae2648ea3","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d0be8cf9-eb8b-49d7-a39b-82fd264a49e8","keyword":"Ni-Mn-Ga合金","originalKeyword":"Ni-Mn-Ga合金"},{"id":"a92048bc-d249-4f7f-951f-4b4e9164c0b2","keyword":"马氏体相变","originalKeyword":"马氏体相变"},{"id":"3c860237-8747-4af3-8054-934a157e2a02","keyword":"磁诱导应变","originalKeyword":"磁诱导应变"}],"language":"zh","publisherId":"gncl200304014","title":"浇铸态Ni50Mn27Ga23合金中的马氏体相变和磁应变","volume":"34","year":"2003"},{"abstractinfo":"在宽温度范围内ZrW2O8都能保持较大各向同性的负膨胀系数,因而得到了广泛关注.本文介绍了ZrW2O8的基本性质、负膨胀机理和制备方法,重点介绍了近期复合材料的研究现状,ZrW288与Cu、Al、ZrO2及水泥复合得到低膨胀或近零膨胀材料.热错配应力及微结构对ZrW2O8复合材料性能的影响尚不明确,仍需实验及理论上的深入研究.","authors":[{"authorName":"王鑫","id":"cfec2446-b346-41b9-ad6d-c8157c9932d1","originalAuthorName":"王鑫"},{"authorName":"冯猛","id":"c3a1eecf-c2e9-4a45-bcbb-b832ba603b23","originalAuthorName":"冯猛"},{"authorName":"张建福","id":"a904e631-af55-4882-8009-42bdda3f18ee","originalAuthorName":"张建福"},{"authorName":"王新林","id":"2a447992-7d11-4085-801c-4775e50bd07b","originalAuthorName":"王新林"}],"doi":"","fpage":"60","id":"80ab7603-6e7a-4326-b02d-4d4476624602","issue":"2","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"658799e4-3aa4-45cc-a8ae-16219a905bd3","keyword":"ZrW2O8","originalKeyword":"ZrW2O8"},{"id":"cab4977b-c292-40ad-9c9e-96fd25602479","keyword":"负热膨胀","originalKeyword":"负热膨胀"},{"id":"e03f4aac-21d8-4342-9339-f5e0e2d8f116","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"jsgncl200902015","title":"低膨胀钨酸锆(ZrW2O8)复合材料的研究现状","volume":"16","year":"2009"}],"totalpage":35,"totalrecord":347}