欢迎登录材料期刊网

材料期刊网

高级检索

红外热成像技术是一种通过外加激励获得零件表面温度场分布,并从热像图中提取零件损伤信息的无损检测技术,它具有快速、实时、非接触等优点,研究和应用前景广阔.综述了红外热成像无损检测技术的发展现状和应用实例,通过对比3种常用的红外热成像技术:脉冲红外热成像、超声红外热成像和锁相红外热成像,认为超声锁相红外热成像技术具有其他几种技术无法比拟的优势,并从检测工艺和信号处理等方面提出了改进此技术的具体措施.

参考文献

[1] 潘小青,刘庆成.红外技术的发展[J].华东地质学院学报,2002(01):66-69.
[2] Madani Louaayou;Nasreddine Nait-Said;Fatima Zohra Louai .2D finite element method study of the stimulation induction heating in synchronic thermography NDT[J].NDT & E International: Independent Nondestructive Testing and Evaluation,2008(8):577-581.
[3] Carosena Meola;Giovanni M. Carlomagno;Luca Giorleo .The use of infrared thermography for materials characterization[J].Journal of Materials Processing Technology,2004(0):1132-1137.
[4] 何嘉武;张超省;冯辅周.红外热波无损检测技术的研究现状及应用[J].振动与冲击,2010(增刊):293.
[5] 袁仁续,赵鸣.红外热像技术在无损检测中的应用研究进展[J].福州大学学报(自然科学版),2005(z1):203-207.
[6] 张建合,郭广平.国内外飞速发展的热像无损检测技术[J].无损探伤,2005(01):1-4,26.
[7] Krishnendu Chatterjee;Suneet Tuli;Simon G. Pickering;Darryl P. Almond .A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniques[J].NDT & E International: Independent Nondestructive Testing and Evaluation,2011(7):655-667.
[8] Milne J M;Reynolds W N .The nondestruclive evaluation of composite and other materials by thermal pulse video thermography[J].SPIE,1984,520(06):119.
[9] MA Shuohan;MA Qishuang;Liu Xinbo.Applications of chirp z transform and multiple modulation zoom spectrum to pulse phase thermography inspection[J].NDT & E International: Independent Nondestructive Testing and Evaluation,2013:1-8.
[10] 汤慧君,丁铁英,宗明成.脉冲加热红外热成像无损检测的模拟研究[J].激光与红外,1999(01):46-50.
[11] 薛书文,洪伟铭.脉冲加热红外热成像无损检测技术回顾[J].湛江师范学院学报,2004(06):22-25.
[12] 缪鹏程,洪毅,张仲宁,季晓勇,张淑仪.红外热像仪在超声红外热像技术中的应用[J].激光与红外,2003(02):132-134.
[13] 吴斌,邓菲,何存富.超声导波无损检测中的信号处理研究进展[J].北京工业大学学报,2007(04):342-348.
[14] 江涛,杨小林,阚继广.超声红外热成像无损评估技术[J].无损检测,2009(11):884-886.
[15] 刘波,李艳红,张小川,徐义广,张存林.锁相红外热成像技术在无损检测领域的应用[J].无损探伤,2006(03):12-15.
[16] Datong Wu;Cerd Busse .Lock-in thermography for nondestructive evaluation of materials[J].REVUE GENERALE DE THERMIQUE,1998,37:693.
[17] Simon Pickering;Darryl Almond .Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques[J].NDT & E International: Independent Nondestructive Testing and Evaluation,2008(7):501-509.
[18] Liu Junyan;Tang Qingju;Wang Yang .The study of inspection on SiC coated carbon-carbon composite with subsurface defects by lock-in thermography[J].Composites science and technology,2012(11):1240-1250.
[19] 张炜,刘涛,杨正伟,张瑞民.复合材料锁相红外热像法无损探伤技术研究[J].激光与红外,2009(09):939-943.
[20] 刘慧 .超声红外锁相热像无损检测技术的研究[D].哈尔滨工业大学,2010.
[21] 刘慧,刘俊岩,王扬.超声锁相热像技术检测接触界面类型缺陷[J].光学精密工程,2010(03):653-661.
[22] 刘慧,刘俊岩,王扬.基于超声锁相热像技术检测缺陷的热图序列处理[J].红外与激光工程,2011(05):944-948.
[23] Tang Qingju;Liu Junyan;Wang Yang et al.Subsurface interfacial defects of metal materials testing using ultrasound infrared lock-in thermography[J].Procedia Engineering,2011,16:499.
[24] Liu, J.;Qin, L.;Tang, Q.;Wang, Y. .Experimental study of inspection on a metal plate with defect using ultrasound lock-in thermographic technique[J].Infrared physics and technology,2012(4):284-291.
[25] 洪毅,缪鹏程,张仲宁,张淑仪,孙利,水修基,季晓勇,张志炳.超声红外热像技术及其在无损检测中的应用[J].南京大学学报(自然科学版),2003(04):547-552.
[26] 张淑仪.超声红外热像技术及其在无损评价中的应用[J].应用声学,2004(05):1-6.
[27] 孙天.红外测温技术在发动机故障诊断中的应用[J].工程机械,2006(12):60-61.
[28] Maldague Xivaer;Largouet Yves;Couturier Jean-Pierre .A study of defect depth using neural networks in pulsed phase thermography:Modeling,noise,experiments[J].REVUE GENERALE DE THERMIQUE,1998,37:704.
[29] Sch(o)nbergera A;Virtanenb S;Giesea V et al.Non-destructive evaluation of stone-impact damages using pulsed phase thermography[J].Corrosion Science,2012,56:168.
[30] Han Jeong-Seb;Park Jin-Hwan .Detection of corrosion steel under an organic coating by infrared photography[J].Corrosion Science,2004,46:787.
[31] Xiaokang Yin;David A Hutchins;Guoming Chen.Detecting surface features on conducting specimens through an insulation layer using a capacitive imaging technique[J].NDT & E International: Independent Nondestructive Testing and Evaluation,2012:157-166.
[32] Grzegorz Ptaszek;Peter Cawley;Darryl Almond .Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems[J].NDT & E International: Independent Nondestructive Testing and Evaluation,2012(1):71-78.
[33] 李斌,童小燕,姚磊江,程起有.基于红外和声发射的复合材料疲劳损伤实时监测[J].机械科学与技术,2011(02):191-194.
[34] 曾令可,吴卫生.复合材料的红外无损检测[J].激光与红外,1996(02):80.
[35] 王成亮,杨波.飞机复合材料超声红外无损检测实验研究[J].激光与红外,2010(04):376-379.
[36] Mian Ahsan;Han Xiaoyan;Islam Sarwar et al.Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique[J].Composites Science and Technology,2004,64:657.
[37] Avdelidis N P;Almond D P;Dobbinson A et al.Aircraft composites assessment by means of transient thermal NDT[J].Progress in Aerospace Sciences,2004,40:143.
[38] 孙卉,丁有发,刘迪.红外技术在衬里损伤诊断和保温效果评估中的应用[J].炼油设计,1999(02):43-45.
[39] 庄丽亚.红外线监测技术及其在电力设备中的应用[J].硅谷,2009(19):49.
[40] 孙国栋,吴云峰,叶玉堂,冯晓昱,李洋.涡轮叶片红外热波无损检测技术研究[J].红外,2009(06):39-43.
[41] 柳子政,臧述升.燃气轮机状态监测新方法的综合分析[J].燃气轮机技术,2007(04):25-27,34.
[42] 谢兴盛,颜芳,陆佳佳,叶玉堂,邓俊杰,魏建英,孙国栋,方亮.红外热波无损检测技术在涡轮叶片探伤中的应用[J].红外技术,2007(09):552-555.
[43] Tyler Kakuda;Andi Limarga;Anirudha Vaidya et al.Non-destructive thermal property measurements of an APS TBC on an intact turbine blade[J].Surface and Coatings Technology,2010,205:446.
[44] Yang Bin;Sun Dongbai .Testing,inspecting and monitoring technologies for wind turbine blades:A survey[J].Renewable and Sustainable Energy Reviews,2013,22:515.
[45] 李旭东,刘勋,马渊,刘俊岩,吴东流.锁相红外热成像技术测量结构的应力分布[J].工程力学,2011(11):218-224.
[46] 金国锋,张炜,杨正伟,田干,黄智勇.基于超声热波方法的铝合金应力腐蚀裂纹检测与识别[J].科学技术与工程,2013(07):1900-1904.
[47] Carosena Meola;Giovanni Maria Carlomagno;Antonino Squillace et al.Non-destructive evaluation of aerospace materials with lock-in thermography[J].ENGINEERING FAILURE ANALYSIS,2006,13:380.
[48] 胡振华,汤雷,高明涛.超声波激励下混凝土裂纹发热过程的试验研究和有限元分析[J].水利与建筑工程学报,2013(02):58-61,75.
[49] 汤雷,蒋金平,顾培英,胡振华.超声红外法检测混凝土构件试验研究[J].水利学报,2012(z1):70-75.
[50] 陈大鹏,李晓丽,李艳红,张存林,冯立春,陶宁.超声红外热像技术检测激光焊缝质量[J].无损检测,2008(10):747-749.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%