欢迎登录材料期刊网

材料期刊网

高级检索

通过电解?强化微电解耦合法处理模拟含铜废水,考察不同工艺条件对出水Cu 2+残留浓度的影响,借助电化学工作站和扫描电子显微镜分析铜离子的还原电沉积过程和结晶过程。结果表明:电解?强化微电解耦合法处理含铜废水的最佳工艺条件为电解电压12 V,pH=4,铁炭质量比为3:1,还原反应后出水Cu2+残留浓度仅为4μg/L,出水水质远优于单独微电解法和单独电解法的,强化微电解反应施加的外电场能推动铜离子电沉积还原峰向正方向移动,降低反应过电位,促进还原反应快速进行,同时,外电场的存在使得活性炭表面电沉积的铜晶体显著细化。

The simulated cupric wastewater was treated by electrolysis-enhanced microelectrolysis coupled method. The influence of different processing conditions on residual Cu 2+ reductiveconcentration of effluent was studied, the electrodeposition process and crystalline process of copper ion were analyzed by electrochemical workstation and SEM. The results show that the optimum process conditions of electrolysis-enhanced microelectrolysis coupled method are that the electrolyzing voltages is 12 V, pH is 4, and mass ratio of iron to carbon is 3:1. Residual Cu2+concentration of effluent is only 4μg/L, the water quality of effluent is far superior to those of the separate use of microelectrolysis and electrolysis. The external electric field on microelectrolysis padding can make the reduction peak voltage of copper ion move to positive potential, reduce the reactive over voltage, and promote the reduction reaction working quickly. At the same time, the electrodeposited copper crystals on the surface of activated carbon can be refined significantly because of external electric field.

参考文献

[1] 王云燕,柴立元,王庆伟,舒余德.重金属离子(Zn2+, Cu2+, Cd2+, Pb2+)-水系羟合配离子配位平衡研究[J].中国有色金属学报,2008(z1):183-191.
[2] Anca-lulia Stoica .Analytical Studies on the Pollution of Arges River[J].Critical reviews in analytical chemistry,1999(3):243-247.
[3] COTMAN M;SLOVENIAZ K J;DROLC A .Study of impacts of treated wastewater to Krka river[J].Water Science and Technology,2001,44(06):47-54.
[4] Evina Katsou;Simos Malamis;Katherine J. Haralambous .Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system[J].Chemosphere: Environmental toxicology and risk assessment,2011(4):557-564.
[5] 刘振海,王鹏,姜洪泉,陈志传.铜镍电镀退镀废液资源化处理工艺[J].环境科学,2002(02):113-116.
[6] 郑雅杰,彭映林,李长虹.二段中和法处理酸性矿山废水[J].中南大学学报(自然科学版),2011(05):1215-1219.
[7] MICHALIS K;ATHANASIOS K;CONSTANTINI S .Occurrence and fate of heavy metals in the wastewater treatment process[J].CHEMOSPHERE,2003,53:1201-1210.
[8] TIAN Ying;LI Zhe-qi;XUA Hong-feng;YANG Feng-lin .Comparison on electro-reduction of Cu(Ⅱ)using polypyrrole and stainless steel electrodes[J].Separation and purification technology,2008,63:334-340.
[9] Q.B. Zhang;Y.X. Hua;Y.T. Wang .Effects of ionic liquid additive [BMIM]HSO_4 on copper electro-deposition from acidic sulfate electrolyte[J].Hydrometallurgy,2009(3/4):291-297.
[10] 陈昊,王亮,周勇,朱家骅.流化床电极处理低浓度硫酸铜废水研究[J].化工设计,2006(05):13-16,28.
[11] Xin-Chao Ruan;Ming-Yue Liu;Qing-Fu Zeng .Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis[J].Separation and Purification Technology,2010(2):195-201.
[12] Li Fan;Jinren Ni;Yanjun Wu;Yongyong Zhang .Treatment Of Bromoamine Acid Wastewater Using Combined Process Of Micro-electrolysis And Biological Aerobic Filter[J].Journal of hazardous materials,2009(2/3):1204-1210.
[13] WANG Yu-ping,WANG Lian-jun,PENG Pan-ying,LU Tian-hong.Treatment of naphthalene derivatives with iron-carbon micro-electrolysis[J].中国有色金属学会会刊(英文版),2006(06):1442-1447.
[14] JU Feng;HU Yong-you;CHEN Jian-hua .Removal of chelated Cu(Ⅱ)from aqueous solution by adsorption-coprecipitation with iron hydroxides prepared from microelectrolysis process[J].DESALINATION,2011,274:130-135.
[15] Feng Ju;Yongyou Hu .Removal of EDTA-chelated copper from aqueous solution by interior microelectrolysis[J].Separation and Purification Technology,2011(1):33-41.
[16] 罗发生,徐晓军,李新征,邱珉,王盼,陈宁.微电解法处理铜冶炼废水中重金属离子研究[J].水处理技术,2011(03):100-104.
[17] 肖祖峰,陈明东,韩光泽.电磁场作用下的强化传质研究进展[J].化工进展,2008(12):1911-1916.
[18] 徐晓军;王刚;范领东;杨津津 韩振宇 .一种用于回收废水中重金属的板式复合电化学装置[P].中国,201020156829,2011-01-19.
[19] 徐晓军;王刚;杨津津;范领东 韩振宇 .一种用于回收废水中重金属的筒式复合电化学装置[P].中国,201020613517,2011-06-15.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%