欢迎登录材料期刊网

材料期刊网

高级检索

本文在细观力学模型的基础上,考虑到缠绕工艺,提出一种计算缠绕复合材料三维弹性模量的方法.该方法将代表单元分为层合部分和编织部分.层合部分用经典层合板理论计算刚度矩阵,编织部分采用四胞模型和均一化方法计算刚度矩阵,最后按两部分在代表单元中所占比例,将两部分的刚度矩阵平均化,得到代表单元的刚度矩阵.利用该方法预测了几种材料的弹性模量,并与实验结果对比,结果显示本文所提出的方法能较好地计算缠绕复合材料的弹性模量.

Based on the analysis of the 3D micromechanical model and the characteristics of {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用KOH为活化剂,通过改变活化剂用量,得到不同活化程度的活性碳纳米管.将这些ACNTs分别作为电极材料应用于电化学超级电容器,经电化学容量性能测试,发现ACNTs的电化学容量随活化剂用量的变化而变化,当mKOH/mCNTs=3时,达到最大值.同时用TEM和HRTEM对ACNTs进行形貌分析,用氮气自动吸附仪测试了ACNTs的比表面积和等温吸附曲线,发现ACNTs的电化学容量随活化剂用量的变化与其BET比表面积有直接关系,其BET比表面积的大小决定其电化学容量的高低.","authors":[{"authorName":"江奇","id":"849cf402-05b9-44f9-a71f-8dc790d149b1","originalAuthorName":"江奇"},{"authorName":"卢晓英","id":"de8c3bef-a027-4dc9-aa4f-e6e71cdcce70","originalAuthorName":"卢晓英"},{"authorName":"赵勇","id":"02f5390d-7459-44d7-93ab-d221caf5ee83","originalAuthorName":"赵勇"},{"authorName":"任贤明","id":"5ae00b5d-ca7a-439b-8b67-5c9bd30eaccf","originalAuthorName":"任贤明"},{"authorName":"宋利君","id":"19460b74-f6de-4c53-aaa7-2185a100aabb","originalAuthorName":"宋利君"}],"doi":"10.3321/j.issn:1000-324X.2006.05.037","fpage":"1253","id":"9548e684-3f32-4393-8e52-0d56f4ac7afa","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"44b4dcb7-5c11-458f-ae39-373aa67eb6bc","keyword":"活性碳纳米管","originalKeyword":"活性碳纳米管"},{"id":"0903ef9e-6382-4ee2-ab0b-7541842ff839","keyword":"电化学容量","originalKeyword":"电化学容量"},{"id":"7e69ff16-d7d3-4cb7-b5e7-71b8394062e8","keyword":"活化剂用量","originalKeyword":"活化剂用量"}],"language":"zh","publisherId":"wjclxb200605037","title":"活化剂用量对活性碳纳米管电化学容量的影响","volume":"21","year":"2006"},{"abstractinfo":"用铸造及快淬工艺制备了La-Mg-Ni系(PuNi3型)贮氢合金La2Mg(Ni0.85Co0.15)9Bx(x=0,0.05,0.1,0.15,0.2),分析测试了铸态及快淬态合金的微观结构与电化学容量,研究了硼及快淬工艺对合金微观结构及电化学容量的影响.结果表明,铸态合金具有多相结构,包括(La,Mg)Ni3相(PuNi3型)、LaNi5相,一定量的LaNi2相和微量的Ni2B相,经快淬处理后Ni2B相消失.硼的加入对铸态及快淬态合金的容量产生不同的影响,铸态合金的容量随硼含量的增加而单调下降,而快淬态合金的容量随硼含量的增加有一极大值.快淬处理对含硼及不含硼合金的容量也有不同的影响,随淬速的增加,不含硼合金的容量单调下降,而含硼合金的容量可以获得一个极大值.","authors":[{"authorName":"张羊换","id":"9297bc0d-7490-4d7d-b83d-66d7edb3f5a4","originalAuthorName":"张羊换"},{"authorName":"董小平","id":"2b5260aa-2b5d-4ddc-a003-7e1538cbc5b2","originalAuthorName":"董小平"},{"authorName":"郭世海","id":"1f2414bb-3ba6-451f-8959-9122d10051cb","originalAuthorName":"郭世海"},{"authorName":"冯猛","id":"3bea9077-108c-4eb8-8a06-70d57e9a5267","originalAuthorName":"冯猛"},{"authorName":"任江远","id":"e47c4f67-c2da-4024-aec5-a4926f997210","originalAuthorName":"任江远"},{"authorName":"王新林","id":"2ce66034-7ac4-416c-bf97-73f2e5255446","originalAuthorName":"王新林"}],"doi":"","fpage":"500","id":"0e3ab481-8aec-4862-8dda-083bc8d42311","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"91607dc6-fd94-421a-9402-62445a3a07e9","keyword":"硼含量","originalKeyword":"硼含量"},{"id":"3ca0eabd-ee4f-4f88-bda3-ba8eca7cc223","keyword":"快淬","originalKeyword":"快淬"},{"id":"49ca91d0-0942-40d6-a2f4-716bd2d5b5b4","keyword":"La-Mg-Ni系贮氢合金","originalKeyword":"La-Mg-Ni系贮氢合金"},{"id":"24fa1ba6-fb98-4044-a61d-2810abbc5a58","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"ed9345a5-7538-483d-b6dc-56a2350ed4c3","keyword":"电化学容量","originalKeyword":"电化学容量"}],"language":"zh","publisherId":"gncl200603047","title":"铸态及快淬态La2Mg(Ni0.85Co0.15)9Bx(x=O~O.2)贮氢合金的微观结构与电化学容量","volume":"37","year":"2006"},{"abstractinfo":"针对Ti-Mn基储氢合金循环稳定性差这一问题, 提出了一个关于Ti-Mn基储氢合金循环稳定性的简易模型, 并引入两个表示储氢合金本征 属性的因子: 活化特征因子β和容量衰减因子A。 采用该模型可以描述合金活化与容 量衰减的全过程。 实验测量了Ti0.26Zr0.07V0.21Mn0.1Ni0 .3Cr0.03 和Ti0.26Zr0.07V0.19Mn0.1Ni0.3Cr 0.05合金的活化与充放电循环过程, 理论与实验有较好的吻合关系。","authors":[{"authorName":"张勇","id":"fa616950-82e6-4a6d-85f3-d3a12eb13a5d","originalAuthorName":"张勇"},{"authorName":"郭生武","id":"f0a313da-061e-40ad-84df-5bf0f23a75cd","originalAuthorName":"郭生武"},{"authorName":"柳永宁","id":"b3e8a276-1aef-449b-b5eb-bf6cf2fb440e","originalAuthorName":"柳永宁"}],"doi":"","fpage":"79","id":"456ea726-7a2d-4694-a50d-707138135c05","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"a67cb0f9-3a8a-4fd0-9546-d85c0b48eae0","keyword":"Ti-Mn基储氢合金","originalKeyword":"Ti-Mn基储氢合金"},{"id":"c779b25e-fbfc-4469-8a34-578b15240ff7","keyword":"电化学容量","originalKeyword":"电化学容量"},{"id":"b05ae5a8-3b39-46a5-9739-9b44b33528b4","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"zgysjsxb200101018","title":"Ti-Mn基储氢合金电化学容量的一个简易模型","volume":"11","year":"2001"},{"abstractinfo":"利用在水溶液中电沉积的方法制备了LaNi5贮氢合金薄膜.采用XRD方法研究了贮氢合金薄膜在充放电前后相结构的变化,运用扫描电镜观察了合金薄膜的表面形态,通过电化学测试(循环伏安、恒电流充放电)研究其电化学贮氢性能.结果表明,该合金薄膜具有较好的电化学贮氢性能,电化学活性较高,无需活化过程,最高电化学容量可达156 mAh/g.","authors":[{"authorName":"夏同驰","id":"1bd3773c-ab4f-4ce1-91e7-dc34191decf6","originalAuthorName":"夏同驰"},{"authorName":"李晓峰","id":"1bf652b0-0152-4f78-a214-920c012d6fb7","originalAuthorName":"李晓峰"},{"authorName":"董会超","id":"40da7d7b-a638-4518-903c-ce07a37fed9e","originalAuthorName":"董会超"},{"authorName":"尚伟伟","id":"38c3f2ac-3cde-4f42-845b-e8ea136548c8","originalAuthorName":"尚伟伟"},{"authorName":"吴倩明","id":"700a7b65-f756-43b0-af62-4df9a6ec848c","originalAuthorName":"吴倩明"}],"doi":"","fpage":"896","id":"d896aafb-da77-490c-a9be-ed33c4adf81c","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1c02f0ae-bf91-4859-84f9-f7b91d23e50c","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"d2d46c8a-973c-4ca6-966c-42e6e910129b","keyword":"贮氢合金","originalKeyword":"贮氢合金"},{"id":"95537d21-2494-4612-a67f-087b89fc3e4e","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"146d9132-d247-4f19-80cb-416669e93780","keyword":"电化学容量","originalKeyword":"电化学容量"}],"language":"zh","publisherId":"xyjsclygc200705034","title":"电沉积镧镍合金薄膜的电化学贮氢性能研究","volume":"36","year":"2007"},{"abstractinfo":"用高能球磨方法制备出CoFe3Sb12合金粉末,研究了电化学性能.结果表明,CoFe3Sb12中的活性元素Sb可以与锂离子发生可逆电化学反应,其嵌锂产物为Li3Sb.CoFe3Sb12电极在20mA/g的电流密度下第一次可逆容量为396mAh/g.在材料中加入原子分数为50%的石墨(化学计量式为CoFe3Sb12--C16)后,以100mA/g进行充放电时,第一次可逆容量为380mAh/g.电极的循环寿命性能优良.","authors":[{"authorName":"蒋小兵","id":"2ddbadb7-6c88-4897-8d31-5bdd82fae391","originalAuthorName":"蒋小兵"},{"authorName":"赵新兵","id":"a57883af-42ad-48a7-9e1e-cd29e4f19f0e","originalAuthorName":"赵新兵"},{"authorName":"张丽娟","id":"dc219dd0-9ada-46cd-b59e-e095c8e2bc40","originalAuthorName":"张丽娟"},{"authorName":"曹高劭","id":"2aeb45cd-2c5a-4004-99d6-caa81f561645","originalAuthorName":"曹高劭"},{"authorName":"吕春萍","id":"0a42d48d-c291-414e-a09e-e7ecb7f9c064","originalAuthorName":"吕春萍"},{"authorName":"周邦昌","id":"dd28834b-898f-4da2-a196-f2225d65972a","originalAuthorName":"周邦昌"}],"doi":"10.3321/j.issn:1005-3093.2001.04.017","fpage":"469","id":"30b908ec-1e60-4ee6-98ad-69d1295efc02","issue":"4","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"63236f29-6280-4c89-a3be-0faaec89f6cf","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"6d3bfee9-0e04-4dc2-a315-589b49f9822b","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"1cd2efe8-2d34-43a8-9512-5f63744f9e3a","keyword":"CoFe3Sb12","originalKeyword":"CoFe3Sb12"},{"id":"5491a1f2-b5ae-49b0-bb50-770b0018695e","keyword":"电化学容量","originalKeyword":"电化学容量"},{"id":"3f318ea9-5273-47fe-bfce-48306104ac9b","keyword":"大电流充放","originalKeyword":"大电流充放"}],"language":"zh","publisherId":"clyjxb200104017","title":"新型锂离子电池负极材料COFe3Sb12","volume":"15","year":"2001"},{"abstractinfo":"本文采用多离子替代制备出纳米α-Ni(OH)2电极材料.XRD测试表明其晶型为α型,TEM观察表明粒子形状不规则,大小在20~30 nm左右.通过对Zn2+、Al3+离子替代量,表面活性剂种类,阴离子种类和反应温度的正交试验优化,得出最佳的工艺参数,并合成出质量电化学容量为316 mA@h/g的电极材料(相同制备工艺得到的日本田中化学球镍电极容量仅为220 mA@h/g).","authors":[{"authorName":"王锐","id":"6d74f233-3abe-4948-97ec-70a14bc3134a","originalAuthorName":"王锐"},{"authorName":"黄永攀","id":"73a79589-aac6-4529-88cd-e64b0da6ad76","originalAuthorName":"黄永攀"},{"authorName":"李道火","id":"d722aaa6-2d05-490c-9e9d-ea25a0eb4535","originalAuthorName":"李道火"},{"authorName":"浦坦","id":"ade7f770-6ec0-43aa-bfe9-298285b07f60","originalAuthorName":"浦坦"}],"doi":"10.3969/j.issn.1007-5461.2004.03.021","fpage":"387","id":"76c9119c-466b-4797-93d5-303db49e385e","issue":"3","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"cbca0dfe-7674-4e86-8daa-5290cc5644c7","keyword":"光电子学","originalKeyword":"光电子学"},{"id":"f96a455e-460f-4cdc-a6b2-2900c2e896d5","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"cc3f0178-d85b-4dad-a6bd-03f240adf0e2","keyword":"纳米氢氧化镍","originalKeyword":"纳米氢氧化镍"},{"id":"da1bd9fe-bc08-4cef-abad-51fd2bbc8e14","keyword":"电化学容量","originalKeyword":"电化学容量"}],"language":"zh","publisherId":"lzdzxb200403021","title":"Zn2+、Al3+替代纳米α相氢氧化镍制备正交试验研究","volume":"21","year":"2004"},{"abstractinfo":"采用磁控溅射法和脱合金法相结合的方法制备了纳米多孔铜钛合金.以原子比为40:60的Cu-Ti合金靶材为原料用磁控溅射方法制备了厚度为720 nm的铜钛合金薄膜(Cu35Ti65),并将此薄膜置于0.13 mol/L的氢氟酸溶液中用脱合金方法腐蚀得到了纳米多孔铜钛合金薄膜,将制备好的铜钛合金薄膜作为三电极测试系统中的负极材料,以对其电容性能进行测试.本文测试和计算了这种纳米多孔铜钛薄膜电极在1 mol/L Na2SO4电解液中的比电容.结果表明,电极在这种中性溶液中的电化学性能良好,比容量为8.96 mFocm-2,比现有的纳米多孔铜电极有很大的提高.对NPCu/Ti电极的循环充放电性能的测试结果表明,该电极具有优良的循环稳定性能,比现有的纳米多孔铜电极有明显的改善.这种改善与电极材料的多孔结构有关.","authors":[{"authorName":"刘洁","id":"6e1b7b48-5d66-4cf0-b65c-1cab9f688c98","originalAuthorName":"刘洁"},{"authorName":"刘旭燕","id":"a170856a-19b6-46f7-a859-828d04d1eb10","originalAuthorName":"刘旭燕"},{"authorName":"刘芳","id":"358c65f6-836c-4b06-924e-f06b2456f2b2","originalAuthorName":"刘芳"},{"authorName":"王飞","id":"7dca5c0f-1c3f-4a40-b946-0076f17cd822","originalAuthorName":"王飞"},{"authorName":"潘登","id":"875cbc9e-3ae5-4bc6-8925-29d340d408c2","originalAuthorName":"潘登"}],"doi":"","fpage":"913","id":"0df64946-3083-487e-8cd2-ce33fcc882f3","issue":"12","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"bf37ee8a-eef4-467f-aa9e-7d4141797aac","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"43d1250c-fdf1-4ccd-8233-51f0562e3ee4","keyword":"纳米多孔铜钛","originalKeyword":"纳米多孔铜钛"},{"id":"ffed6eac-ba87-4b8a-9d17-fc1d46ff9233","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"2ea7d440-4b75-4ea5-89dd-89871276ffa7","keyword":"脱合金","originalKeyword":"脱合金"},{"id":"b62b025a-7490-4784-b448-527ad2b9f1d3","keyword":"电化学容量","originalKeyword":"电化学容量"},{"id":"ee9e8908-67f3-48d3-b0da-15516305b43b","keyword":"超级电容器","originalKeyword":"超级电容器"}],"language":"zh","publisherId":"clyjxb201512005","title":"纳米多孔铜钛合金的制备及其超级电容器性能","volume":"29","year":"2015"},{"abstractinfo":"系统介绍了近十几年来Cu改善储氢合金性能的研究进展,探讨了Cu时合金制备、合金包覆、作为电极添加剂的作用.在大部分工艺条件中,Cu能有效抑制储氢合金的粉化和氧化,从而提高合全的循环寿命.同时,Cu还能有效改善合金电极的电化学性能.","authors":[{"authorName":"陈玉安","id":"9516f76c-9870-4dc6-8879-e5112ca872dc","originalAuthorName":"陈玉安"},{"authorName":"黄华","id":"129ec6a1-9ba4-4d2d-a04f-2f506d971345","originalAuthorName":"黄华"},{"authorName":"李德成","id":"ebdc9d4b-1c93-4222-90ca-8c85b234d240","originalAuthorName":"李德成"}],"doi":"","fpage":"15","id":"20b0774a-dcaf-4074-8840-dcc33efabade","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9bbcf85d-622a-4e68-892b-31a2279064f6","keyword":"储氢合金","originalKeyword":"储氢合金"},{"id":"9876b45c-c9cb-450b-8542-99a33cd8291f","keyword":"Cu","originalKeyword":"Cu"},{"id":"27c65105-5bcb-4401-be6d-ea27ace13ff2","keyword":"循环寿命","originalKeyword":"循环寿命"},{"id":"1ebeb9be-2908-406d-9cd4-043e591c0f55","keyword":"电化学容量","originalKeyword":"电化学容量"}],"language":"zh","publisherId":"cldb200911003","title":"Cu影响储氢合金性能的研究进展","volume":"23","year":"2009"},{"abstractinfo":"采用变频滚压振动磨在干法室温条件下对活性炭改性,通过正交试验,研究了电机转速(振动频率)、研磨时间和添加剂对活性炭电极性能的影响.结果表明:适当降低转速有利于提高活性炭电极性能,在试验范围内,700 r/min为最佳转速;最佳研磨时间为1 h,延长研磨时间无益于活性炭性能进一步提高;添加二氧化锰可以提高活性炭电极性能,电容量可达252 F/g.","authors":[{"authorName":"丁浩冉","id":"f846ace9-d31a-4264-a003-6fc19a16f190","originalAuthorName":"丁浩冉"},{"authorName":"王树林","id":"045259de-da68-4830-97d6-0099a97bb11a","originalAuthorName":"王树林"},{"authorName":"高慧峰","id":"50991f91-0b82-4af5-af1e-6e93a3e1ec94","originalAuthorName":"高慧峰"},{"authorName":"吴明霞","id":"fc3da31b-527e-48a3-b48d-f220b59a5809","originalAuthorName":"吴明霞"}],"doi":"10.3969/j.issn.1000-3738.2007.10.011","fpage":"35","id":"86a8cfd7-7551-4ea8-98bb-8d19efb86a49","issue":"10","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"4cea2dfe-4b78-4125-9bd3-531171ec9bec","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"9f9960e9-5be4-41dd-b0c8-61325b3a2ff7","keyword":"滚压振动磨","originalKeyword":"滚压振动磨"},{"id":"76b561b1-6198-439a-a6df-3650fb435094","keyword":"电化学容量","originalKeyword":"电化学容量"},{"id":"d1878231-48e1-410b-81ea-547ef94266ad","keyword":"超级电容器","originalKeyword":"超级电容器"}],"language":"zh","publisherId":"jxgccl200710011","title":"干法室温改性对活性炭电极性能的影响","volume":"31","year":"2007"},{"abstractinfo":"设计了三种电化学测试系统并进行金属氢化物电极电化学性能对比分析.结果表明,开口式三电极系统测出的放电容量明显高于夹片式和模拟电池系统所测出的放电容量,夹片式电极系统测试的结果和模拟电池系统测试的结果比较一致.作者认为氢化物电极的电化学容量不仅与贮氢合金的本征因素有关,且与电极制备工艺和电极的工作环境密切相关.","authors":[{"authorName":"江建军","id":"343102c0-2529-453e-83a1-e60e904b4c09","originalAuthorName":"江建军"},{"authorName":"雷永泉","id":"3350c650-f8a4-4ff1-8b5b-7f2930686d01","originalAuthorName":"雷永泉"},{"authorName":"孙大林","id":"5c36fc1b-c31e-4fdd-aefc-9134398b49e7","originalAuthorName":"孙大林"},{"authorName":"吴京","id":"637f3d1f-ecc4-4414-bbbe-17b1e90a05fb","originalAuthorName":"吴京"},{"authorName":"王启东","id":"0b59f31f-e592-409a-b700-c7a26eb6af94","originalAuthorName":"王启东"}],"categoryName":"|","doi":"","fpage":"729","id":"03bb0e0c-29b9-4d57-b55e-c09619d1662e","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"db7d77fd-defd-442a-b098-c8f321857e3e","keyword":"金属氢化物电极","originalKeyword":"金属氢化物电极"},{"id":"97c1d3d6-192d-460c-99e7-3c4762556517","keyword":" hydrogen storage alloy","originalKeyword":" hydrogen storage alloy"},{"id":"f60bfee1-705c-4d39-b324-7e18c1c38f12","keyword":" electrochemical property","originalKeyword":" electrochemical property"},{"id":"e004b5c7-e674-4319-b378-ae48c73f8d47","keyword":"evaluation method","originalKeyword":"evaluation method"}],"language":"zh","publisherId":"0412-1961_1997_7_5","title":"贮氢电极合金电化学容量的评价方法","volume":"33","year":"1997"}],"totalpage":3144,"totalrecord":31439}