欢迎登录材料期刊网

材料期刊网

高级检索

随着电气工程和柔性输配电的快速发展,高介电常数和高电导率的多功能聚合物基复合材料受到越来越广泛的关注。广泛应用于高压输配电领域的聚乙烯(PE)绝缘材料介电性能优良,但空间电荷和水树枝等对其电气性能影响很大。介绍了目前聚乙烯空间电荷的抑制及测量方法的研究现状,展望了空间电荷分布改善及测量方法改善的研究方向。

With the rapid development of electrical engineering and flexible power transmission and distribution, the multi-functional polymer based composites with high dielectric constant and high electric conductivity have got more and more attention. Polyethylene(PE), which applied in high-voltage direct current transmission and distribution field, has good dielectric property, but the space charge and water tree branches in PE have big influence on its dielectric property. The situation of space charge suppression and measurement methods of PE at present were reviewed, and the research directions of the space charge and measurement methods were proposed.

参考文献

[1] 陆宪良;展红卫.聚乙烯绝缘的辐照交联及其电荷积累行为[J].绝缘材料通讯,1998(04):29-33.
[2] 马丽婵,郑晓泉,谢安生.交联聚乙烯电缆中电树枝的研究现状[J].绝缘材料,2007(05):49-52.
[3] 陈广辉,王安妮,何东欣,杨凯,陈胜科,王伟,孙辉.交联聚乙烯绝缘空间电荷研究进展[J].绝缘材料,2012(04):27-30.
[4] 高超飞,王赞,隋恒,李晟,岳彩鹏,孙辉,刘钧元.交联聚乙烯电缆中空间电荷的研究现状[J].电网与清洁能源,2010(08):29-33.
[5] Fukuma Masumi;Takao Toru;Fujii Masayuki.Phase Characteristics of Space Charge Signal under AC Non-uni-form Electric Field in PEA Method[A].Cancun,Mexico,2011:157-160.
[6] 李长明.高分子绝缘材料化学基础[M].哈尔滨:哈尔滨工业大学出版社,2007
[7] 方亮,付海金,吕亮,王霞,屠德民.等离子表面处理聚乙烯中空间电荷分布[J].中国电机工程学报,2003(08):151-154.
[8] 王云杉,周远翔,王宁华,孙清华.聚乙烯表面形貌对其空间电荷特性的影响[J].绝缘材料,2008(04):42-45.
[9] 安振连,刘晨霞,陈暄,郑飞虎,张冶文.表层氟化聚乙烯中的空间电荷[J].物理学报,2012(09):507-513.
[10] Zhang C;Mizutani T.Space Charge Behavior of LDPE with a Blocking Electrode[A].,2002:614-617.
[11] 何华琴,王霞,吴超一,屠德民.加聚酰亚胺薄膜阻挡层的聚乙烯中空间电荷分布特性的研究[J].绝缘材料,2005(05):35-38.
[12] 宋伟,张冬,杨春,韩柏,孙志,何丽娟,王暄,雷清泉.LDPE中介入聚合物阻挡层后其交流电场下的电树特性分析[J].高电压技术,2010(07):1651-1656.
[13] L. Y. Gao;W. Y. Guo;D. M. Tu .Interfacial microstructure and withstand voltage of polyethylene for power cables[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,2003(2):233-239.
[14] 宋红涛 .高性能聚乙烯绝缘材料与半导电屏蔽材料制备及其性能研究[D].北京化工大学,2011.
[15] Kazuki Terashima;Makoto Hara;Hiroshi Suzuki;Kazuo Watanabe .Research and development of ±250 kV DC XLPE cables[J].IEEE Transactions on Power Delivery,1998(1):7-16.
[16] 牟季美,张立德.纳米复合材料发展趋势[J].物理,1996(01):31.
[17] Tanaka, T.;Bulinski, A.;Castellon, J.;Frechette, M.;Gubanski, S.;Kindersberger, J.;Montanari, G.C.;Nagao, M.;Morshuis, P.;Tanaka, Y.;Pelissou, S.;Vaughan, A.;Ohki, Y.;Reed, C.W.;Sutton, S.;Han, S.J. .Dielectric properties of XLPE/Sio2 nanocomposites based on CIGRE WG D1.24 cooperative test results[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,2011(5):1482-1517.
[18] 陈炯,尹毅,李喆,肖登明,党智敏.纳米SiOx/聚乙烯复合介质强场电导的预电应力效应研究[J].中国电机工程学报,2006(07):146-151.
[19] 陈炯,苗建峰,尹毅,李喆,肖登明.氧化硅掺杂对聚乙烯复合材料空间电荷分布的影响[J].绝缘材料,2009(06):54-57,60.
[20] Hosier IL.;Swingler SG.;Vaughan AS. .On the effects of morphology and molecular composition on the electrical strength of polyethylene blends[J].Journal of Polymer Science, Part B. Polymer Physics,2000(17):2309-2322.
[21] Murata Y;Goshowaki M;Reddy C C.Investigation of Space Charge Distribution and Volume Resistivity of XLPE/MgO Nanocomposite Material under DC Voltage Applica-tion[A].,2008:502-505.
[22] 成霞,陈少卿,王霞,屠德民.纳米ZnO对聚乙烯电老化过程中空间电荷及击穿特性的影响[J].绝缘材料,2008(01):44-48,52.
[23] Nelson J K.Dielectric Polymer Nanocomposites[M].New York:Springer-Verlag New York Inc,2009:203-293.
[24] 刘斌 .蒙脱土添加对低密度聚乙烯的介电和空间电荷特性影响研究[D].重庆大学,2012.
[25] 刘文辉;吴建东;王俏华.纳米添加物的粒径对聚合物纳米复合电介质中空间电荷行为的影响[J].中国电机工程学报,2009(29):61-66.
[26] 吴锴,陈曦,王霞,屠德民.高压直流电缆用纳米复合聚乙烯的研究[J].绝缘材料,2010(04):1-2,10.
[27] 党智敏,亢婕,屠德民,尹毅.三梨糖醇对PE空间电荷和耐水树性能的影响[J].高电压技术,2001(01):16-18.
[28] 尹毅,屠德民,李明,李忠华.用等温电流法研究自由基清除剂的作用机理--聚合物电老化陷阱理论的实验验证[J].中国电机工程学报,2000(03):13-15,25.
[29] 尹毅,屠德民,霍振宇,杜强国,龚振芬.氯化聚乙烯共混对聚乙烯的空间电荷效应的影响[J].电工技术学报,2000(04):52-57.
[30] Martin C P;Vaughan A S;Sutton S J.On Morphology, Molecular, Composition and Breakdown Behavior in Semi-Crystalline[A].,2003:309-312.
[31] 苏朝化,张照军.高密度聚乙烯的共混改性研究[J].绝缘材料,2007(03):35-38.
[32] Kwang S. Suh;Ho Gyu Yoon;Chang Ryong Lee;T. Okamoto;T. Takada .Space charge behavior of acrylic monomer-grafted polyethylene[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,1999(3):282-287.
[33] Seung Hyung Lee;Jung-Ki Park .Space charge and electrical conduction in maleic anhydride-grafted polyethylene[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,1995(6):1132-1139.
[34] 李巧娟,谢大荣.低密度聚乙烯与有机硅共混和接枝改性对性能的影响研究[J].绝缘材料,2004(04):17-19.
[35] Cai G X;Xu J F.Breakdown Properties of Polyethylene-Ethylene Vinyl Acetate Copolymer Composite under Liquid Nitrogen Temperature[A].Tokyo,Japan,1991:419-422.
[36] 崔小明.1-己烯共聚聚乙烯的开发和利用前景[J].化工文摘,2008(02):25-28.
[37] 郑飞虎 .用压力波法研究低密度聚乙烯的空间电荷行为[D].上海:同济大学,2003.
[38] Gerhard-Multhaupt R;Sessler G M;West J E et al.Investigation of Piezoelectricity Distributions in Poly(vinylidene fluoride)by Means of Quartzor Laser-Generated Pressure Pulses[J].Journal of Applied Physics,1984,55(07):2769-2775.
[39] Ahmed N.H.;Srinivas N.N. .Review of space charge measurements in dielectrics[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,1997(5):644-656.
[40] 王伟,高超飞,孙辉,李上国.电缆本体空间电荷电声脉冲法测量装置的研制[J].高电压技术,2011(06):1349-1354.
[41] Lang S B;Das-Gupta D K .A Technique for Determination of Spatial Distributions of Polarization and Space Charge in Polymer Electrets[J].Journal of Applied Physics,1986,59(06):2151-2160.
[42] 张兴元,陈王丽华,蔡忠龙.VDF/TrFE铁电共聚物极化分布与退极化过程的激光强度调制方法研究[J].物理学报,1999(09):1760-1766.
[43] P. Notignher;Jr.;S. Agnel;A. Toureille .Thermal step method for space charge measurements under applied dc field[J].IEEE transactions on dielectrics and electrical insulation: A publication of the IEEE Dielectrics and Electrical Insulation Society,2001(6):985-994.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%