欢迎登录材料期刊网

材料期刊网

高级检索

通过Gleeble热模拟方法研究了Ti和B对耐候焊丝钢的CCT行为影响规律.组织分析表明:在冷却速度为0.1~1℃/s时,将Ti质量分数从0.05%增加到0.10%后,相转变的开始和结束温度分别降低12和37℃,同时组织中TiN颗粒数量增加,也将产生M-A组元的临界冷却速度从0.5℃/s降低到0.2℃/s;继续添加0.002%B会进一步将相转变的开始和结束温度分别降低约26和60℃,同时增加相转变组织中的M-A组元的体积含量和尺寸,也将产生M-A组元的临界冷却速度从0.2℃/s降低到0.1℃/s.硬度数据表明:把Ti质量分数从0.05%增加到0.10%后,盘条强度增加约56 MPa;继续添加质量分数0.002%的B后,盘条强度将再增加78MPa.

参考文献

[1] 林国庆,陈富华.耐候富氩混合气体保护焊丝的研制[J].金属制品,2001(04):23-24.
[2] 温东辉,宋凤明,钱余海,刘自成,施青.高韧性耐候钢厚板的开发[J].世界钢铁,2009(05):7-10,26.
[3] 孙静涛,曲朝霞,聂友明,徐玉君,陈增有,温东辉,杜兵.S450EW新型耐候钢焊接工艺与低温韧性研究[J].机械制造文摘-焊接分册,2012(02):30-32.
[4] 钱余海,李自刚.加速腐蚀环境下高强耐候钢Q450NQR1的耐蚀性能研究[J].宝钢技术,2007(02):5-8.
[5] 范益.ER55-G断丝原因分析[J].南钢科技与管理,2008(04):1-3.
[6] 周新龙;胡献忠 .耐候焊丝用钢H08MnSiCuCrNi热轧盘条的研制[J].钢铁,2000,35(增刊):237.
[7] 亓奉友,甄先锋,李文英.含Ti焊接用线材的开发[J].金属制品,2009(03):36-38.
[8] 郭慧英;张宇;潘鑫.低合金高强钢焊接用气体保护焊丝的研发[A].江苏镇江,2011
[9] Oh D W;Olson D L;Frost R H .The Influence of Boron and Titanium on Low-Carbon Steel Weld Metal[J].Welding Journal,1990,69:151.
[10] Sha Q Y;Hua M J;Garcia C I;DeArdo A J.Transformation Characteristics of M-A Constituents in Nb-Ti Microalloyed,Low-Mn Steel and Their Effect on Mechanical Properties[A].Philadelphia Pennsylvania,2008:1337.
[11] Merwin M J;Becker C T;Giansante D R.Analysis of HSLA Steel Microstructures by Various Techniques[A].Philadelphia Pennsylvania,2009:956.
[12] Zhang Y;Pan X;Xie J C.Development of 610MPa Grade Steel Plate With Low Yield Ratio Through Thermo-Mehcanical Controlled Processing With Accerlarated Cooling[A].北京,2010:214.
[13] I.A. Yakubtsov;J. D. Boyd .Bainite transformation during continuous cooling of low carbon microalloyed steel[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2001(3):296-301.
[14] E. J. Pavlina;C. J. Van Tyne .Correlation of Yield Strength and Tensile Strength with Hardness for Steels[J].Journal of Materials Engineering and Performance,2008(6):888-893.
[15] Moon J;Lee C;Uhm S et al.Coarsening Kinetics of TiN Particle in a Low Alloyed Steel in Weld HAZ:Considering Critical Particle Size[J].Acta Materialia,2006,54:1053.
[16] S. F. MEDINA .Influence of Ti and N Contents on Austenite Grain Control and Precipitate Size in Structural Steels[J].ISIJ International,1999(9):930-936.
[17] 尹士科,王勇,谷野满.钢中硼化物的析出行为[J].钢铁研究学报,2012(11):45-49.
[18] Hwang B;Lee C G;Lee T H .Correlation of Microstructure and Mechanical Properties of Thermomechanical Processed Low-Carbon Steels Containing Boron and Copper[J].Metallurgical and Materials Transactions,2010,41A:85.
[19] J.Haga .Effect of Boron on Mechanical Properties and Recrystallization Behavior of Ti-added Ultra-low Carbon Cold-rolled Steel Sheets[J].ISIJ International,1998(6):580-586.
[20] Maitrepierre P;Thivellier D;Tricot R .Influence of Boron on the Decomposition of Austenite in Low Carbon Alloyed Steels[J].Metallurgical and Materials Transactions,1975,6A:287.
[21] McLean D.Grain Boundaries in Metals[M].Oxford:Calredon Press,1957
[22] Seah M P .Adsorption-Induced Interface Decohesion[J].Acta Metallurgica,1980,28(07):955.
[23] M. HAMADA;Y. FUKADA;Y. KOMIZO .Microstructure and precipitation behavior in heat affected zone of C-Mn microalloyed steel containing Nb, V and Ti[J].ISIJ International,1995(10):1196-1202.
[24] J. Dut,M. Strangwood,C.L. Davis.Effect of TiN Particles and Grain Size on the Charpy Impact Transition Temperature in Steels[J].材料科学技术学报:英文版,2012(10):878-888.
[25] Yan W;Shang Y Y;Yang K .Effect of TiN Inclusions on the Impact Toughness of Low-Carbon Microalloyed Steels[J].Metallurgical and Materials Transactions,2006,37A:2147.
[26] Ruizhen WANG;C. I. GARCIA;M. HUA .Microstructure and precipitation behavior of Nb, Ti complex microalloyed steel produced by compact strip processing[J].ISIJ International,2006(9):1345-1353.
[27] D. K. Matlock;J. G. Speer .Microalloying concepts and application in long products[J].Materials Science and Technology: MST: A publication of the Institute of Metals,2009(9):1118-1125.
[28] 吴红艳,杜林秀,薛文颖,沈开照,刘相华,王国栋.变形工艺对V、Ti微合金钢连续冷却相变的影响[J].钢铁钒钛,2006(01):6-11.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%