欢迎登录材料期刊网

材料期刊网

高级检索

提出一种基于虚拟裂纹闭合技术的界面元模型,用以模拟复合材料的分层破坏和预测结构的承载能力.界面元被嵌入在模型分层扩展路径上,计算结构的能量释放率,结合幂指数破坏准则,模拟复合材料的分层扩展.对由于裂尖单元长度不同所带来的分析误差进行了适当的修正,以降低网格粗细变化所带来的不利影响.为了检验该界面元的可靠性,分别将其应用于对双悬臂梁(DCB)模型、端边切口(ENF)模型和混合模式弯曲(MMB)模型的分层扩展分析中.计算结果与解析解基本吻合,从而验证了采用该界面元模拟复合材料分层破坏的可行性.用该方法对3个含有不同初始损伤复合材料T型接头的界面拉脱分层破坏进行数值模拟,计算结果与试验数据吻合良好.

An interface element model based on the virtual crack closure technique (VCCT) was introduced to study the 2D delamination growth problem and predict the loading capacity of laminated composites. The interface elements were embedded along the potential crack path in advance to calculate the strain energy release rate and simulate the delamination growth of laminated composites in conjunction with the power law fracture criteria. The numerical errors induced by the different lengths of the elements at the crack tip had been corrected to minimize the negative effect of change in mesh density on numerical results. The double cantilever beam(DCB), end notch flexure (NEF) and mixed mode bending(MMB) models were taken to validate this approach. The results of the FE simulation agree well with the analytical solutions. It confirms that the approach is reliable and feasible for modeling the delamination growth in laminated composites. Three composite T-joints with different flaws were numerically simulated with the interface elements. Excellent agreement was found between the numerical results and the experimental data.

参考文献

[1] Rybicki E F,Kanninen M F.A finite element calculation of stress intensity factors by a modified crack closure integral[J].EngFract Mech,1977,9(4):931-938.
[2] 闫相桥.含裂缝的复合材料及非均匀材料的断裂力学研究[D].哈尔滨:哈尔滨工业大学,1989.Yan Xiangqiao.Study on fracture mechanics of cracked composites and heterogeneous materials[D].Harbin:Harbin Institute of Technology,1989.
[3] 陈欣.界面元法的开裂和损伤梯度模型及其工程应用[D].北京:清华大学,2004.Chen Xin.Fracture and gradient enhanced damage model in interface stress element method and its application in engineering[D].Beijing:Tsinghua University,2004.
[4] 崔维成.复合材料结构破坏过程的计算机模拟[J].复合材料学报,1996,13(4):102-111.Cui Weicheng.Computional simulation of progressive failure in composite structures[J].Acta Materiae Compositae Sinica,1996,13(4):102-111.
[5] Xie De,Sherrill B,Biggers J.Progressive crack growth analysis using interface element based on the virtual crack closure technique[J].Finite Elements in Analysis and Design,2006,42(11):977-984.
[6] Krueger R.The virtual crack closure technique:History,approach and applications,ICASE Report No.2002-10[R].Hampton,VA,USA:ICASE,2002.
[7] Xie De,Chung J,Waas A M,et al.Failure analysis of adhesively bonded structures:From coupon level data to structure level predictions and verification[J].Int J Fract,2005,134(10):231-250.
[8] 刘玲,黄争鸣,周烨欣,徐贵营.超细纤维增强复合材料Ⅰ型层间断裂韧性分析[J].复合材料学报,2007,24(4):166-171.Liu Ling,Huang Zhengming,Zhou Yexin,Xu Guiying.Improvement of mode Ⅰ interlaminar fracture toughness of composites reinforced by ultrathin fibers[J].Acta Materiae Compositae Sinica,2007,24(4):166-171.
[9] 孟庆春,张行.DCB试样应力强度因子的一个改进公式[J].北京航空航天大学学报,1996,22(6):83-87.Meng Qingchun,Zhang Xing.Improved formula of stress intensity factor about DCB specimens[J].Journal of Beijing University of Aeronautics and Astronautics,1996,22(6):83-87.
[10] Yoshihara Hiroshi.Influence of span/depth ratio on the measurement of mode Ⅱ fracture toughness of wood by endnotched flexure test[J].J Wood Sci,2001,47(1):8-12.
[11] Reeder J R,Crews J H.Mixed-mode bending method for delamination testing[J].AIAA Journal,1990,28(7):1270-1276.
[12] Li H C H,Dharmawan F,Herszberg I,John S.Fracture behaviour of composite maritime T-joints[J].Composite Structures,2006,75(1-4):339-350.
[13] La Scalaa J J,Orlickib J A,Winston C,et al.The use of bimodal blends of vinyl ester monomers to improve resin processing and toughen polymer properties[J].Polymer,2005,46(9):2908-2921.
[14] Suppakul P,Bandyopadhyay S.The effect of weave pattern on the mode-Ⅰ interlaminar fracture energy of E-glass/vinyl ester composites[J].Compos Sci Technol,2002,62(1):9-17.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%