欢迎登录材料期刊网

材料期刊网

高级检索

用快淬技术制备了Mg2Ni1-xCux(x=0,0.1,0.2,0.3,0.4)合金,用XRD、SEM、HRTEM分析了铸态和快淬态合金的微观结构,测试了合金的气态贮氢动力学性能和电化学贮氧动力学。结果表明,所有快淬态合金均具有纳米晶结构,没有非晶相。Cu替代Ni不改变合金的主相Mg2Ni,而是使合金的晶粒显著细化。Cu替代Ni和快淬处理均显著地提高了合金的气态及电化学贮氢动力学性能。当淬速从0 m/s(铸态被定义为淬速0 m/s)提高到30 m/s时,Mg2Ni0.8Cu0.2合金的5 min吸氢饱和率从56.7%增加到92.7%.20 min放氢率从14.9%增加到40.4%,高倍率放电能力从38.5%增加到75.5%,氢扩散系数从8.34×10^-12cm^2/s增加到3.74×10^-11cm^2/s。

The Mg2Ni1-xCux(x=0,0.1,0.2,0.3,0.4) hydrogen storage alloys have been prepared by melt-spinning technology.The structures of the as-cast and spun alloys are characterized by XRD, SEM and TEM.The gaseous hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus.The electrochemical hydrogen storage kinetics of the as-spun alloys is tested by an automatic galvanostatic system.The results show that all the as-spun alloys hold an entire nanocrystalline structure and are free of amorphous phase.The substitution of Cu for Ni, instead of changing the major phase Mg2Ni,leads to a visible refinement of the grains of the as-cast alloys. Furthermore,both the melt spinning treatment and Cu substitution significantly improve the gaseous and electrochemical hydrogen storage kinetics of the alloys.As the spinning rate increases from 0(As-cast is defined as spinning rate of 0 m/s) to 30m/s,the hydrogen absorption saturation ratio in 5 min,for the Mg2Ni0.8Cu0.2alloy,increases from 56.7 to 92.7%,the hydrogen desorption ratio in 20 min from 14.9 to 40.4%,the high rate discharge ability from 38.5 to 75.5%,the hydrogen diffusion coefficient from 8.34×10^-12 to 3.74×10^-11cm^2/s.

参考文献

[1] I.P.Jain, C.Lal, A.Jain, Hydrogen storage in Mg: A most promising material, Int. J. Hydrogen Energy, 35(10), 5133(2010).
[2] X.Y.ZHAO, L.Q.MA, Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries, Int. J. Hydrogen Energy, 34(11), 4788(2009).
[3] T.Spassov, U.Koster, Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy, J. Alloys Compd, 279(2), 279(1998).
[4] L.J.Huang, G.Y.Liang, Z.B.Sun, D.C.Wu, Electrode properties of melt-spun Mg–Ni–Nd amorphous alloys, J. Power Sources, 160(1), 684(2006).
[5] S.N.Kwon, S.H.Baek, D.R.Mumm, S.H.Hong, M.Y.Song, Enhancement of the hydrogen storage characteristics of Mg by reactive mechanical grinding with Ni, Fe and Ti, Int. J. Hydrogen Energy, 33(17), 4586(2008).
[6] P.Palade, S.Sartori, A.Maddalena, G.Principi, S.Lo Russo, M.Lazarescu, G.Schinteie, V.Kuncser, G.Filoti, Hydrogen storage in Mg–Ni–Fe compounds prepared by rapid quenching and ball milling, J. Alloys Compd, 415(1–2), 170(2006).
[7] G.Mulas, F.Delogu, G.Cocco, Effects of mechanical processing on the kinetics of H2 absorption in Mg2Ni alloys, J. Alloys Compd, 473(1–2), 180(2009).
[8] I.Gonz`alez Fern`andez, G.O.Meyer, F.C.Gennari, Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling, J. Alloys Compd, 464(1–2), 111(2008).
[9] M.Y.Song, S.N.Kwon, J.S.Bae, S.H.Hong, Hydrogenstorage properties of Mg–23.5Ni–(0 and 5)Cu prepared by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy, 33(6), 1711(2008).
[10] M.Savyak, S.Hirnyj, H.-D.Bauer, M.Uhlemann, J.Eckert, L.Schultz, A.Gebert, Electrochemical hydrogenation of Mg65Cu25Y10 metallic glass, J. Alloys Compd, 364(1–2), 229(2004).
[11] L.J.Huang, G.Y.Liang, Z.B.Sun, Y.F.Zhou, Nanocrystallization and hydriding properties of amorphous meltspun Mg65Cu25Nd10 alloy, J. Alloys Compd, 432(1–2), 172(2007).
[12] G.Y.Liang, D.C.Wu, Lu Li, L.J.Huang, A discussion on decay of discharge capacity for amorphous Mg–Ni–Nd hydrogen storage alloy, J. Power Sources, 186(2), 528(2009).
[13] G.K.Williamson, W.H.Hall, X–ray line broadening from filed aluminium and wolfram, Acta Metall, 1(1), 22(1953).
[14] G.Zheng, B.N.Popov, R.E.White, Electrochemical Determination of the Diffusion Coefficient of Hydrogen Through an LaNi4.25Al0.75 Electrode in Alkaline Aqueous Solution, J. Electrochem. Soc, 142(8), 2695(1995).
[15] K.Tanaka, Y.Kanda, M.Furuhashi, K.Saito, K.Kuroda, H.Saka, Improvement of hydrogen storage properties of melt-spun Mg–Ni–RE alloys by nanocrystallization, J. Alloy Compd, 295, 521(1999).
[16] Y.Wu, W.Han, S.X.Zhou, M.V.Lototsky, J.K.Solberg, V.A.Yartys, Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys, J. Alloys Compd, 466(1–2), 176(2008).
[17] L.Zaluski, A.Zaluska, J.O.Strom-Olsen, Nanocrystalline metal hydrides, J. Alloys Compd. 253-254, 70(1997).
[18] S.Orimo, H.Fujii, K.Ikeda, Notable hydriding properties of a nanostructured composite material of the Mg2Ni-H system synthesized by reactive mechanical grinding, Acta Mater, 45(1), 331(1997).
[19] J.H.Woo, K.S.Lee, Electrode characteristics of nanostructured Mg2Ni-type alloys prepared by mechanical alloying, J. Electrochem. Soc, 146(3), 819(1999).
[20] M.Y.Song, C-D.Yim, S.N.Kwon, J-S.Bae, S-H.Hong, Preparation of Mg–23.5Ni–10(Cu or La) hydrogen-storage alloys by melt spinning and crystallization heat treatment, Int. J. Hydrogen Energy, 33(1), 87(2008).
[21] M.Au, J.Wu, Q.Wang, The hydrogen storage properties and the mechanism of the hydriding process of some multicomponent magnesium-base hydrogen storage alloys, Int. J. Hydrogen Energy, 20(2), 141(1995).
[22] A.Gasiorowski, W.Iwasieczko, D.Skoryna, H.Drulis, M.Jurczyk, Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying (M=Mn, Al), J. Alloys Compd, 364(1–2), 283(2004) 23 N.Kuriyama, T.Sakai, H.Miyamura, I.Uehara, H.Ishikawa, T.Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd, 202(1–2), 183(1993).
[23] A.Gasiorowski, W.Iwasieczko, D.Skoryna, H.Drulis, M.Jurczyk, Hydriding properties of nanocrystalline Mg2-xMxNi alloys synthesized by mechanical alloying (M=Mn, Al), J. Alloys Compd, 364(1–2), 283(2004) 23 N.Kuriyama, T.Sakai, H.Miyamura, I.Uehara, H.Ishikawa, T.Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd, 202(1–2), 183(1993).
[24] N.Kuriyama, T.Sakai, H.Miyamura, I.Uehara, H.Ishikawa, T.Iwasaki, Electrochemical impedance and deterioration behavior of metal hydride electrodes, J. Alloys Compd, 202(1-2), 183(1993).
[25] H.Niu, D.O.Northwood, Enhanced electrochemical properties of ball-milled Mg2Ni electrodes, Int. J. Hydrogen Energy, 27(1), 69(2002).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%