欢迎登录材料期刊网

材料期刊网

高级检索

通过静电纺丝法制备出纳米羟基磷灰石/丝素蛋白/聚己内酯复合超细纤维,利用扫描电镜、红外光谱仪、X射线衍射仪对纳米羟基磷灰石/丝素蛋白/聚己内酯复合超细纤维形貌和结构进行表征,并进行了拉伸测试.结果表明,随着超细纤维中羟基磷灰石含量的增加,纤维的直径逐渐降低,纤维中聚己内酯的结晶逐渐变差.相比于丝素蛋白/聚已内酯超细纤维,含有质量比为30%羟基磷灰石的复合超细纤维仍具有较好的力学性能.体外小鼠成纤维细胞(L929)培养表明,纳米羟基磷灰石/丝素蛋白/聚己内酯复合超细纤维对细胞没有毒性.

Ultrafine nano-hydroxyapatite (nHA)/silk fibroin(SF)/poly(ε-caprolactone) (PCL) composite fibers were prepared via electrospinning. Scanning electron microscopy(SEM),attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD) were used to characterize the electrospun ultrafine nHA/SF/PCL composite fibers. The mechanical properties of fibers were also tested. The results show that the diameter of the fibers decreases and the crystallinity of PCL in the fibers becomes poor with increasing nHA content in the fibers. Compared with SF/PCL fibers, the mechanical properties of ultrafine nHA/SF/PCL composite fibers are still well when the nHA mass ratio is 30% in the fibers. In vitro mouse fibroblaSt (L929)cell culture indicates that the ultrafine nHA/SF/PCL composite fibers are non-toxicity.

参考文献

[1] Zhang X H,Baughman C B,Kaplan D L.In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth[J].Biomaterials,2008,29(14):2217-2227.
[2] Sukigara S,Gandhi M,Ayutsede J,et al.Regeneration of bombyx mori silk by electrospinning Ⅰ:Processing parameters and geometric properties[J].Polymer,2003,44(19):5721-5727.
[3] Ayutsede J,Gandhi M,Sukigara S,et al.Regeneration of bombyx mori silk by electrospinning Ⅲ:Characterization of electrospun nonwoven mat[J].Polymer,2005,46(5):1625-1634.
[4] Chen Chen,Cao Chuanbao,Ma Xilan,et al.Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method[J].Polymer,2006,47(18):6322-6327.
[5] Lee S J,Oh S H,Liu J,et al.The use of thermal treatments to enhance the mechanical properties of electrospun poly(ε-caprolactone) scaffolds[J].Biomaterials,2008,29(10):1422-1430.
[6] Lee S J,Liu J,Oh S H,et al.Development of a composite vascular scaffolding system that withstands physiological vascular conditions[J].Biomaterials,2008,29(19):2891-2898.
[7] Tillman B W,Yazdani S K,Lee S J,et al.The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction[J].Biomaterials,2009,30(4):583-588.
[8] Zhang Y H,Venugopal J R,El-Turki A,et al.Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering[J].Biomaterials,2008,29(32):4314-4312.
[9] 王刚,姚金波,周旭光,盛楠."一步法"制备纳米相丝素蛋白/羟基磷灰石生物复合材料[J].复合材料学报,2008,25(6):136-139.Wang Gang,Yao Jinbo,Zhou Xuguang,Sheng Nan.Preparation of nano silk fibroin/hydroxyapatite biological composite by"one-step"method[J].Acta Materiae Compositae Sinica,2008,25(6):136-139.
[10] 杨辉,张林,张宏,徐可为.丝素蛋白/羟基磷灰石复合材料的制备及性能表征[J].复合材料学报,2007,24(3):141-146.Yang Hui,Zhang Lin,Zhang Hong,Xu Kewei.Preparation and characterization of the silk fibroin/hydroxyapatite composites[J].Acta Materiae Compositae Sinica,2007,24(3):141-146.
[11] Kaplan D L,Fossey S A,Mello C M,et al.Biosynthesis and processing of silk proteins[J].MRS Bulletin,1992,17(1):41-45.
[12] Elzubair A,Elias C N,Suarez J C M,et al.The physical characterization of a thermoplastic polymer for endodontic obturation[J].Journal of Dentistry,2006,34(10):784-789.
[13] Yang Dongzhi,Jin Yu,Ma Guiping,et al.Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds[J].Journal of Applied Polymer Science,2008,110(6):3328-3335.
[14] Chen E C,Wu T M.Isothermal crystallization kinetics and thermal behavior of poly (ε-caprolactone)/multi-walled carbon nanotube composites[J].Polymer Degradation and Stability,2007,92(6):1009-1015.
[15] Jiang Shichun,Ji Xiangling,An Lijia,et al.Crystallization behavior of PCL in hybrid confined environment[J].Polymer,2001,42(8):3901-3907.
[16] Du Chunling,Jin Jun,Li Yucheng,et al.Novel silk fibroin/hydroxyapatite composite films:Structure and properties[J].Materials Science and Engineering C,2009,29(1):62-68.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%