{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用橡胶轮磨损实验机,对不同工艺条件下三种类型粉末制备的HVOF Cr3C2-25%NiCr涂层进行了磨粒磨损实验.发现该涂层的磨损失重量与磨程基本呈现线性关系,磨损率远低于低碳钢.氧气流量、燃气流量适中的条件下制备的涂层磨损率较低.用团聚致密化工艺制备的粉末沉积的涂层耐磨粒磨损性能较好.涂层的磨损机制主要为先期的粘结相优先切削和随后的碳化物剥落,其中碳化物的剥落对磨损过程起制约作用.","authors":[{"authorName":"纪岗昌","id":"88e9d51b-fc44-45ca-b578-a72d7fa507dc","originalAuthorName":"纪岗昌"},{"authorName":"李长久","id":"3a628e5a-9199-404a-b1ba-3e051d3410d9","originalAuthorName":"李长久"},{"authorName":"王豫跃","id":"c8935821-6578-405e-9bbc-0f895c113f61","originalAuthorName":"王豫跃"},{"authorName":"圆田启嗣","id":"c54c7774-4af0-41bf-a477-2364640b61cf","originalAuthorName":"圆田启嗣"}],"doi":"10.3969/j.issn.1009-6264.2002.04.009","fpage":"34","id":"9f51ea73-df9c-4360-868f-ba8117eb79d6","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"7461409e-0b7c-4c45-ab9f-2387471a8ac6","keyword":"超音速火焰喷涂(HVOF)","originalKeyword":"超音速火焰喷涂(HVOF)"},{"id":"d78af9d6-dbd6-4785-8672-76bce9071501","keyword":"Cr3C2-NiCr涂层","originalKeyword":"Cr3C2-NiCr涂层"},{"id":"95ce7de7-e634-43b9-8720-41adef4cb026","keyword":"磨粒磨损","originalKeyword":"磨粒磨损"},{"id":"3824023a-fc94-4055-8e0a-3f97ab950ea4","keyword":"磨损速率","originalKeyword":"磨损速率"},{"id":"112f6909-b886-4335-9bdd-209538f0856c","keyword":"磨损行为","originalKeyword":"磨损行为"}],"language":"zh","publisherId":"jsrclxb200204009","title":"超音速火焰喷涂Cr3C2-NiCr涂层磨粒磨损行为","volume":"23","year":"2002"},{"abstractinfo":"以炭纤维针刺毡为预制体,先采用化学气相渗透法制备炭基体,然后采用熔融渗硅法制备SiC基体,得到C/C-SiC摩擦材料;利用MM-1000型惯性试验台研究了C/C-SiC材料在不同制动速度下干态和CD15W-40柴油机油润滑状态下的摩擦磨损性能.研究结果表明:C/C-SiC摩擦材料与水的接触角为80.5°左右,为亲油性材料;C/C-SiC材料在CD15W40柴油机油润滑状态下,随制动速度从3000r/min升高到6000r/min,其摩擦因数和线性磨损量在4000r/min时达到最大值,分别是0.21μm/cycle和1.1μm/cycle,而在5000r/min和6000r/min时,其摩擦因数均为0.17,线性磨损量均为0;C/C-SiC摩擦材料在湿态条件下能保持较高的摩擦因数,制动曲线平稳,磨损率低,可作为新一代工程机械和重型车辆湿式离合器用摩擦材料的候选材料.","authors":[{"authorName":"李专","id":"7ef86557-9287-4f6d-95b5-fee162a35c5f","originalAuthorName":"李专"},{"authorName":"肖鹏","id":"cd5ee060-3b44-47e7-b59e-b52206605f24","originalAuthorName":"肖鹏"},{"authorName":"岳静","id":"4fffd3dc-e460-408d-b8ce-4c76f66bcb4a","originalAuthorName":"岳静"},{"authorName":"熊翔","id":"1aa0b790-5c4d-4957-9019-ae4c197c6dd5","originalAuthorName":"熊翔"}],"doi":"10.3969/j.issn.1001-4381.2013.03.014","fpage":"71","id":"bf5fa113-b657-4c17-873b-ce1cf3662cb4","issue":"3","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"1f1b9310-6c9e-4bac-8c0a-aa4ccdba4dfc","keyword":"C/C-SiC","originalKeyword":"C/C-SiC"},{"id":"227bf10c-815e-4aa3-9261-fd6e945c2929","keyword":"湿式","originalKeyword":"湿式"},{"id":"b3bb53dc-fbb1-4474-b6b7-db08d4b355f1","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"322eec49-35b5-4c74-b179-7cfaafd2ab03","keyword":"炭纤维","originalKeyword":"炭纤维"},{"id":"ec3ce275-eeeb-4051-b594-0391adcb46ef","keyword":"制动速度","originalKeyword":"制动速度"}],"language":"zh","publisherId":"clgc201303014","title":"C/C-SiC材料不同制动速率下的湿式摩擦磨损性能","volume":"","year":"2013"},{"abstractinfo":"为提高W6Mo5Cr4V2高速钢的耐磨性,探究了进行深冷工艺时,在不同降温速率的影响下,磨损性能的变化规律.首先对W6Mo5Cr4V2高速钢进行传统的淬火处理,之后加入不同降温速率的深冷处理,最后进行回火处理.采用磨损率对其磨损性能进行了测定,探究耐磨性和硬度的关系,观察磨痕的微观形貌,并对微观组织进行SEM测试,从而分析耐磨性提高的原因.结果表明,未深冷处理试样以黏着磨损为主,深冷后的试样以氧化磨损为主;耐磨性随降温速率的增加先增加,在降温速率为2℃/min时耐磨性最好,相比于未深冷处理试样约提高1.5倍,之后随降温速率的进一步增加而降低.分析认为耐磨性提高是由于深冷处理极大地促进了残留奥氏体向马氏体的转变,促进了细小弥散碳化物的析出,从而提高了硬度,并增强了基体的抗磨损性能.","authors":[{"authorName":"梁晓阳","id":"a95cd507-ea2e-4c87-9132-a396ecb909d2","originalAuthorName":"梁晓阳"},{"authorName":"闫献国","id":"d44b8b25-886c-4f46-9fe7-c8158098b8b6","originalAuthorName":"闫献国"},{"authorName":"郭宏","id":"ba850ba7-d035-4baa-b277-74d9e11e7f15","originalAuthorName":"郭宏"},{"authorName":"冯志阳","id":"3a874a60-92c3-41d3-8656-41a51790a0fb","originalAuthorName":"冯志阳"},{"authorName":"郑召礼","id":"8ce1da4d-4eed-42be-884b-fbc723984071","originalAuthorName":"郑召礼"}],"doi":"","fpage":"79","id":"1a5a22e3-4881-4fdc-9fe8-39f442fd96be","issue":"11","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"17b2a307-20b7-4a9c-8dad-2bb54c563b5c","keyword":"高速钢","originalKeyword":"高速钢"},{"id":"5440bbd1-5584-46b5-837b-caa7d498a33e","keyword":"深冷处理","originalKeyword":"深冷处理"},{"id":"d8ec5ba6-9a71-4f10-8ebc-0992074bafeb","keyword":"降温速率","originalKeyword":"降温速率"},{"id":"11397905-322b-4934-ac3f-b868668a444e","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"jsrclxb201611014","title":"深冷降温速率对W6Mo5Cr4V2高速钢磨损性能的影响","volume":"37","year":"2016"},{"abstractinfo":"介绍了目前关于磨粒磨损的研究成果,对影响磨粒磨损的各种因素进行讨论,并提出一些设想,对磨损件的制作有一定的指导作用.","authors":[{"authorName":"黄智文","id":"884ce257-ab42-41e1-ad90-e48f31809fd5","originalAuthorName":"黄智文"}],"doi":"10.3969/j.issn.1001-3660.2000.04.012","fpage":"34","id":"43554c05-a26d-401a-b973-78a434e3aa23","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"779b17b7-0873-493d-8435-237f0056b3b6","keyword":"磨粒磨损","originalKeyword":"磨粒磨损"},{"id":"3ff7bf91-6fde-4d68-8b9b-3ef41b4818da","keyword":"碳化物","originalKeyword":"碳化物"},{"id":"44b6efee-84fd-45ae-9586-f3aa52225f7b","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"bmjs200004012","title":"谈谈磨粒磨损","volume":"29","year":"2000"},{"abstractinfo":"研究稀土对AZ91和AM60镁合金摩擦磨损性能的影响.结果表明:在所研究的范围内,稀土镁合金的摩擦磨损特性明显优于基体合金;含稀土镁合金与不含稀土镁合金的磨损速率都随载荷的增加而增加,AZ91镁合金的耐磨性要远远高于AM60稀土镁合金.磨损机制在实验条件下都相同,均发生由轻微磨损向严重磨损的转变;稀土的加入细化合金组织,改善镁合金的综合性能,增强磨损表面氧化膜的稳定性,提高稀土镁合金的承载能力,有效地延迟由轻微磨损向严重磨损的转变过程.","authors":[{"authorName":"祁庆琚","id":"314de5db-816e-43d4-9915-68d83337cb5c","originalAuthorName":"祁庆琚"}],"doi":"","fpage":"1219","id":"e96e0fed-7904-424a-8252-1f816223456f","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5b7f0114-1396-4e78-9219-4856da51c16f","keyword":"AZ91","originalKeyword":"AZ91"},{"id":"b9639c36-46dc-4f14-9628-9c79f5a7daef","keyword":"AM60稀土","originalKeyword":"AM60稀土"},{"id":"4546e5ca-fdae-4c55-b980-4fa43546cbb9","keyword":"Mg-Al合金","originalKeyword":"Mg-Al合金"},{"id":"0aed3cb4-2fa7-436f-bf79-8ab36aa59c65","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"}],"language":"zh","publisherId":"zgysjsxb200607015","title":"含稀土镁合金的摩擦磨损性能","volume":"16","year":"2006"},{"abstractinfo":"介绍了摩擦与磨损的定义;摩擦与磨损产生的原因、危害性及分类方法;减摩性及耐磨性的表征参数、测量方法;磨损的分类方法等.最后,以电镀及复合电镀为例,简单介绍了在表面处理技术中制备减摩镀层和耐磨镀层的优越性.","authors":[{"authorName":"覃奇贤","id":"990b63c7-442e-4f58-8350-c807017be6f6","originalAuthorName":"覃奇贤"},{"authorName":"刘淑兰","id":"8e58a1c0-bb83-4559-aadd-4c2cbbb72a5d","originalAuthorName":"刘淑兰"}],"doi":"10.3969/j.issn.1001-3849.2009.05.011","fpage":"33","id":"2c88593f-f4dd-4c8c-84ac-2a5047c548d4","issue":"5","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"f56169ca-e3ce-4e73-873b-a23e37d04bea","keyword":"摩擦","originalKeyword":"摩擦"},{"id":"0695a6b0-7f1b-482f-8726-38481ec1d3f4","keyword":"磨损","originalKeyword":"磨损"},{"id":"289bd393-15e2-4a99-b082-30bb37b2bf39","keyword":"摩擦系数","originalKeyword":"摩擦系数"},{"id":"39cb38cd-92c2-48c6-9197-9c2bff81cb85","keyword":"耐磨性镀层","originalKeyword":"耐磨性镀层"},{"id":"62134782-e882-4467-95cb-e6520fa1b71a","keyword":"表面","originalKeyword":"表面"}],"language":"zh","publisherId":"ddjs200905011","title":"浅谈摩擦与磨损","volume":"31","year":"2009"},{"abstractinfo":"通过对轧辊磨损模型的分析,探讨了适合于在线应用的轧辊磨损回归模型,介绍了轧辊磨损模型的解析原理,并进行了实际解析分析.实际应用结果表明:解析正确,能显著提高模型计算精度.","authors":[{"authorName":"朱洪涛","id":"27ba6a79-c574-4601-bbc4-eb2adb1a7a5a","originalAuthorName":"朱洪涛"},{"authorName":"王哲","id":"f4393af5-dbc9-4d98-9dc8-38633a9b6639","originalAuthorName":"王哲"},{"authorName":"刘相华","id":"f982877f-b7e4-49cb-91bf-b91a83512768","originalAuthorName":"刘相华"},{"authorName":"王国栋","id":"b43ef504-8e8e-48d2-8124-c20ef31716b1","originalAuthorName":"王国栋"},{"authorName":"马文忠","id":"6f0547af-f3bf-49a9-aff5-b3e8be7eb4cf","originalAuthorName":"马文忠"},{"authorName":"杨敏","id":"8bf22b52-0d85-40fc-b0bd-d1bfa188d147","originalAuthorName":"杨敏"}],"doi":"10.3969/j.issn.1001-1447.1999.03.010","fpage":"38","id":"71d89b10-38af-416d-b3c9-e3c680e7a8cc","issue":"3","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"d6cc4ecc-6750-4543-a144-8583d729005e","keyword":"轧辊","originalKeyword":"轧辊"},{"id":"7ae70d73-7c9d-40ec-9670-0f000a1fdb42","keyword":"磨损模型","originalKeyword":"磨损模型"},{"id":"9b4fe089-dccc-4aa7-88b5-c7b58b0b0bd2","keyword":"解析","originalKeyword":"解析"},{"id":"728d8984-50b6-41e6-b5e6-7e65d003e608","keyword":"回归","originalKeyword":"回归"}],"language":"zh","publisherId":"gtyj199903010","title":"轧辊磨损模型研究","volume":"","year":"1999"},{"abstractinfo":"基于修正 Archard 磨损模型,采用数值模拟方法系统分析了 GH4169合金反挤压成形过程中各挤压工艺参数对模具磨损的影响规律。结果表明:在选取的参数范围内,挤压凸模最易产生磨损失效的区域为凸模圆角处,模具最大磨损深度随凸模圆角半径及坯料预热温度的增大而降低,随摩擦系数的增大而增大;当挤压速率小于100 mm /s时,模具最大磨损深度随挤压速率的增大而减小,当挤压速率大于100mm /s 时,模具最大磨损深度随挤压速率的增大先增大后减小。最佳工艺参数坯料预热温度1020℃,摩擦系数0.05,变形速率100mm /s,模具预热温度300℃时模具磨损量最小,为9.28×10-3 mm。","authors":[{"authorName":"李伟伟","id":"6d26c396-21e3-4000-8520-e5790d820253","originalAuthorName":"李伟伟"},{"authorName":"余心宏","id":"c75ed6c5-ac69-4bf1-834c-dc2972094b3c","originalAuthorName":"余心宏"}],"doi":"10.11868/j.issn.1005-5053.2016.1.003","fpage":"12","id":"931f21e8-8894-47e0-838e-002f09080521","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"363c3eeb-08f9-4790-9421-21232eef2e06","keyword":"高温合金","originalKeyword":"高温合金"},{"id":"61610503-810b-4982-ab7a-aa97dc04b872","keyword":"反挤压","originalKeyword":"反挤压"},{"id":"94c18bd3-3ac8-4be5-bdd5-b5114c9ae3d3","keyword":"模具磨损","originalKeyword":"模具磨损"},{"id":"c0513359-25dc-4b65-b69e-26471f23b9c3","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"hkclxb201601003","title":"GH4169合金反挤压成形模具磨损","volume":"","year":"2016"},{"abstractinfo":"研究了多种钢在400℃高温磨损行为, 发现钢具有共同的磨损规律。在低载时钢的磨损率和磨损增长率均较低, 随着载荷增加, 在某一载荷磨损率快速提高。钢高温磨损的本质是一个包含磨面氧化、基体热软化和塑变的物理化学过程。对钢的高温磨损提出了氧化磨损中轻微--严重磨损转变模型及其特征。","authors":[{"authorName":"王树奇崔向红","id":"025cf72b-af73-44e4-826c-40bced03da82","originalAuthorName":"王树奇崔向红"}],"categoryName":"|","doi":"","fpage":"1","id":"c119e5ed-2194-4450-b427-a38192c8e474","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"5bc7a577-1b92-47e1-b7aa-38b4aede135d","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"d75b20c0-8195-4f05-8e13-5b674007344b","keyword":"steel","originalKeyword":"steel"},{"id":"45f496c4-468c-48d0-b4ce-8791d1f4bcc3","keyword":"oxidative wear","originalKeyword":"oxidative wear"},{"id":"cadf956b-3e61-4ac1-bd51-f00c06ae479b","keyword":"elevated--temperature wear","originalKeyword":"elevated--temperature wear"},{"id":"6e3ccc7e-8592-4c3d-85cd-9833aad114f5","keyword":"tribo--oxide","originalKeyword":"tribo--oxide"}],"language":"zh","publisherId":"1005-3093_2012_1_2","title":"钢氧化磨损的轻微--严重磨损转变","volume":"26","year":"2012"},{"abstractinfo":"通过传热分析,给出了定向凝固过程中界面速率对机械牵引速率的响应函数,指出在低速凝固条件下,界面速率可以视为与牵引速率相等;而在高速凝固时界面速率相对于牵引速率存在滞后现象.两个速率保持同步的上限值受到冷却环境、试样尺寸、合金热物理性质等的影响.液相前沿的温度梯度与冷却介质、加热方式以及合金体系有关.在此基础上,分析了实现稳定的亚快速定向凝固的条件.","authors":[{"authorName":"蔡英文","id":"34b25290-50bb-4b20-be41-d2ce69892124","originalAuthorName":"蔡英文"},{"authorName":"俞露","id":"e7cd52d4-9e87-429c-bdac-d4831ffd84a3","originalAuthorName":"俞露"},{"authorName":"许振明","id":"9686bd72-29fa-4b93-aaa3-89a3426c780c","originalAuthorName":"许振明"},{"authorName":"李建国","id":"c74ed3ff-0e81-43ea-a6ff-e6e81c557604","originalAuthorName":"李建国"},{"authorName":"傅恒志","id":"abbef8cd-5b5c-40eb-9fa4-854a716f89f4","originalAuthorName":"傅恒志"}],"doi":"10.3969/j.issn.1000-985X.1998.02.008","fpage":"141","id":"4e8fe861-f229-46d3-9825-d3af80c0b34b","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f3a380e7-6cd5-44d9-aee3-dd5cca3a6693","keyword":"定向凝固","originalKeyword":"定向凝固"},{"id":"f914997f-d118-4f12-8ed9-4cda63a9b70d","keyword":"界面速率","originalKeyword":"界面速率"},{"id":"de5c0994-468e-4104-8198-5d83fb14e5a2","keyword":"牵引速率","originalKeyword":"牵引速率"},{"id":"b755cc8d-ac51-4b62-a908-27ff54876838","keyword":"固液界面","originalKeyword":"固液界面"},{"id":"e59b6a2d-5d03-40ff-81ca-15606a030204","keyword":"热传输","originalKeyword":"热传输"}],"language":"zh","publisherId":"rgjtxb98199802008","title":"定向凝固界面速率对机械牵引速率的响应","volume":"27","year":"1998"}],"totalpage":1803,"totalrecord":18030}