{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对3种水胶比、6种塑钢纤维掺量的橡胶混凝土进行了单轴受压试验研究,测得不同水胶比、不同塑钢纤维掺量的橡胶混凝土应力-应变曲线.根据曲线特点,提出了含有本构参数A、B的塑钢纤维橡胶混凝土单轴压缩本构模型.对应力-应变试验结果进行最小二乘法非线性回归分析,求出本构参数值和纯橡胶混凝土本构参数A、B的数学表达式,明确了立方体抗压强度、橡胶混凝土本构参数及塑钢纤维特征参数与本构参数A、B的关系,得到了塑钢纤维-橡胶混凝土的本构方程.","authors":[{"authorName":"薛刚","id":"c2bea7d8-43bd-4735-97e2-eb9d2260b3a8","originalAuthorName":"薛刚"},{"authorName":"武春风","id":"d644ebf7-d24e-46de-81f8-987b658bdbe5","originalAuthorName":"武春风"},{"authorName":"胡小龙","id":"731f9f52-49aa-4f37-83c4-d94a2a028e1b","originalAuthorName":"胡小龙"}],"doi":"","fpage":"3796","id":"17c9f64a-3d04-4407-acf1-22bf4b786ece","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"bdb61dbb-5051-46d7-a9a3-91a4c9b9f520","keyword":"塑钢纤维","originalKeyword":"塑钢纤维"},{"id":"4a5922a3-20ef-4516-b8e4-d1ba1e468641","keyword":"橡胶混凝土","originalKeyword":"橡胶混凝土"},{"id":"f4948757-b23c-43fc-a490-edae0a63d748","keyword":"应力-应变曲线","originalKeyword":"应力-应变曲线"},{"id":"447f5289-12e4-4c66-a90c-5cc163ad923d","keyword":"本构方程","originalKeyword":"本构方程"}],"language":"zh","publisherId":"gsytb201611052","title":"塑钢纤维-橡胶混凝土应力-应变关系试验研究","volume":"35","year":"2016"},{"abstractinfo":"在水胶比分别为0.36、0.42、0.48的情况下,分别对普通混凝土、橡胶混凝土、塑钢纤维橡胶混凝土进行了抗压强度、劈裂抗拉强度、抗折强度等力学性能的试验研究.试验结果表明:掺入橡胶颗粒后,混凝土强度有所降低,塑钢纤维有助于提高橡胶混凝土的抗压强度.相同水胶比下,塑钢纤维对橡胶混凝土的抗折强度和抗拉强度的提高作用明显,折压比和拉压比均呈现先增大后减小趋势,塑钢纤维掺量宜控制在6 ~8 kg/m3之间.","authors":[{"authorName":"薛刚","id":"d75724d2-80cb-4f39-9b89-6c841dbf47fc","originalAuthorName":"薛刚"},{"authorName":"侯帅","id":"d4d495e3-5bb7-4b8f-a293-06422264f534","originalAuthorName":"侯帅"}],"doi":"","fpage":"1552","id":"0b819eba-4503-42e8-821a-77010eaf0cfe","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"14d4d418-4955-4c99-97f9-ff897adfd149","keyword":"橡胶颗粒","originalKeyword":"橡胶颗粒"},{"id":"29647dd9-6305-4bdd-9f33-d7d715bc57bf","keyword":"塑钢纤维","originalKeyword":"塑钢纤维"},{"id":"1ab3ba43-1658-4b17-af95-70f66ba7ac55","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"ea7eafce-07b1-4eeb-b32f-b4469368f2dc","keyword":"水胶比","originalKeyword":"水胶比"}],"language":"zh","publisherId":"gsytb201605040","title":"不同水胶比的塑钢纤维橡胶混凝土力学性能研究","volume":"35","year":"2016"},{"abstractinfo":"为了研究塑钢纤维轻骨料混凝土的轴心抗压强度(fc)与立方体抗压强度(fcu)的换算关系,通过432个标准棱柱体试件和标准立方体试件研究了塑钢纤维掺量、轻骨料种类和水灰比等影响因素对两种抗压强度关系的影响规律.结果表明:塑钢纤维掺量(5~13 kg/m3)、轻骨料种类和水灰比(0.32~0.4)对轴心抗压强度与立方体抗压强度比值(fc/fcu)无明显影响;经回归分析得到了fc与fcu相关性很好的线性关系方程;基于fc/fcu回归和数学统计分析,塑钢纤维轻骨料混凝土fc相对于fcu的换算系数可取为0.80.","authors":[{"authorName":"牛建刚","id":"4e710c5b-bef8-4c8e-9446-a41e25f6fff3","originalAuthorName":"牛建刚"},{"authorName":"刘洪振","id":"90690b8c-6f81-474a-b311-f25218b8439b","originalAuthorName":"刘洪振"},{"authorName":"左付亮","id":"e9dcf495-491d-476a-828b-0af3a5ae2621","originalAuthorName":"左付亮"},{"authorName":"谢承斌","id":"0b5e9fd4-90ac-413d-871e-0ccd624e965d","originalAuthorName":"谢承斌"}],"doi":"","fpage":"996","id":"7692c51e-44d9-40ef-a172-dfd2d92ef758","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d1c2da83-db1c-4fd7-bac6-3ea510d1dd0c","keyword":"塑钢纤维","originalKeyword":"塑钢纤维"},{"id":"d4c0102f-542b-46f8-9896-f9e5cd70e6d7","keyword":"轻骨料混凝土","originalKeyword":"轻骨料混凝土"},{"id":"78b25c86-9217-4b65-a7dd-139be9fb907b","keyword":"轴心抗压强度","originalKeyword":"轴心抗压强度"},{"id":"067475be-e0ac-4276-a5e2-eb7a4cfc74de","keyword":"立方体抗压强度","originalKeyword":"立方体抗压强度"},{"id":"e61d5f38-fd69-4da3-bf2d-a21faf8452a3","keyword":"换算关系","originalKeyword":"换算关系"}],"language":"zh","publisherId":"gsytb201703041","title":"塑钢纤维轻骨料混凝土抗压强度换算关系试验研究","volume":"36","year":"2017"},{"abstractinfo":"以不掺塑钢纤维的LC30轻骨料混凝土为基准,研究了塑钢纤维掺量变化(5 kg/m3、7 kg/m3、9 kg/m3、11 kg/m3、13 kg/m3)对轻骨料混凝土抗压、劈裂抗拉、抗折、弯曲韧性及抗冲击性能的影响,结果表明:塑钢纤维对轻骨料混凝土抗压性能改善效果不明显,但能显著提高轻骨料混凝土的劈裂抗拉强度、抗折强度、弯曲韧性及抗冲击性能.综合各项性能指标给出塑钢纤维用于结构轻骨料混凝土的建议掺量为9 kg/m3.","authors":[{"authorName":"牛建刚","id":"85ba13a4-ee27-4ee9-bbd4-08ccf477066d","originalAuthorName":"牛建刚"},{"authorName":"李京军","id":"505f6edb-5e2b-4dc0-a616-96e22d0c4315","originalAuthorName":"李京军"},{"authorName":"尹亚柳","id":"49846414-e17d-4289-8003-6a78677f57ba","originalAuthorName":"尹亚柳"},{"authorName":"李云云","id":"77dca9bc-97f4-46e9-8793-f2d6bcfd741a","originalAuthorName":"李云云"}],"doi":"","fpage":"87","id":"663549bb-74a2-4dd6-bda2-227eccfd173d","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4acf7ee7-be09-497f-9909-f30e22556811","keyword":"塑钢纤维","originalKeyword":"塑钢纤维"},{"id":"dd71e063-f94d-4d37-9c95-d6aac6b07944","keyword":"轻骨料混凝土","originalKeyword":"轻骨料混凝土"},{"id":"09a840b1-3f9d-4437-a83a-7b1b4e14a675","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"571f334b-d336-471a-adcf-7ada989b700a","keyword":"纤维掺量","originalKeyword":"纤维掺量"}],"language":"zh","publisherId":"gsytb201601016","title":"塑钢纤维轻骨料混凝土力学性能及最佳纤维掺量试验研究","volume":"35","year":"2016"},{"abstractinfo":"为了分析塑钢轻质骨料加入到混凝土中的力学以及粘结性能,基于试验研究并分析了影响混凝土试件力学以及粘结性能的影响因素,实验结果表明:加入不同比例的塑钢纤维混凝土试件的力学以及粘结性能均表现出了不同的变化特性,混凝土及砂浆的用水量、砂率的不同,会导致塑钢纤维对混凝土的增强效果差异较大;素混凝土的强度较高时,混凝土试件的粘结性能越高,并且其钢筋产生的位移大大降低;加入塑钢纤维的混凝土试件的力学以及粘结性能均会随着轻质骨料筒压的降低而降低。","authors":[{"authorName":"李胡勇","id":"5c3fcc57-0593-4d3c-8e28-66b03e561965","originalAuthorName":"李胡勇"},{"authorName":"王丽","id":"cf52c2d5-d2c1-48f6-8f97-dc49df687d9a","originalAuthorName":"王丽"}],"doi":"","fpage":"235","id":"1788dac1-572c-47e9-9087-161be553fe4a","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"8bf9a189-2d91-46a1-bb67-d48037073bad","keyword":"塑钢纤维轻骨料","originalKeyword":"塑钢纤维轻骨料"},{"id":"1cd0690c-985e-4149-a6af-e504d3f60985","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"ea1d6bf6-d019-4df1-99c3-046147a8231c","keyword":"粘结强度","originalKeyword":"粘结强度"}],"language":"zh","publisherId":"gsytb201701042","title":"掺入塑钢纤维的轻骨料混凝土与钢筋间的力学性能研究","volume":"36","year":"2017"},{"abstractinfo":"采用单点集中加载方法研究了钢纤维聚合物混凝土中钢纤维的长径比对其抗弯性能的影响.结果表明:向聚合物混凝土中加入适量钢纤维可提高其抗弯强度和韧性;当钢纤维长径比为70、含量为48 kg/m3时,钢纤维聚合物混凝土的抗弯强度较大,韧性较好.","authors":[{"authorName":"徐平","id":"8dce793f-bfee-4792-9ab5-b78610c1ca1b","originalAuthorName":"徐平"},{"authorName":"王明旭","id":"6ccd29f9-a516-4c05-acce-8e6f63dd9c46","originalAuthorName":"王明旭"},{"authorName":"潘一山","id":"eb649072-5ab5-4de0-931d-45bad1a3106b","originalAuthorName":"潘一山"}],"doi":"10.3969/j.issn.1000-3738.2006.04.017","fpage":"54","id":"b78e1a2d-633f-4599-9593-4308a5d38bf7","issue":"4","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"9945a980-8cea-4209-9ae0-0f5e4894591f","keyword":"钢纤维聚合物混凝土","originalKeyword":"钢纤维聚合物混凝土"},{"id":"5dd7b55d-1e9e-4eda-aa90-d98e27e60ca0","keyword":"长径比","originalKeyword":"长径比"},{"id":"04db1d27-2248-433a-a708-cbdebc46f841","keyword":"抗弯性能","originalKeyword":"抗弯性能"}],"language":"zh","publisherId":"jxgccl200604017","title":"钢纤维长径比对钢纤维聚合物混凝土抗弯性能的影响","volume":"30","year":"2006"},{"abstractinfo":"钢纤维聚合物混凝土是由聚合物混凝土基体和钢纤维共同组成的纤维增强复合材料,它的力学行为不仅依赖于聚合物混凝土基体的行为,而且与钢纤维的掺量、分散特征以及钢纤维的几何尺寸有关,本文将基于损伤力学原理研究在不同纤维掺量下的钢纤维聚合物混凝土的全程压力-应变曲线及其本构模型.","authors":[{"authorName":"徐平","id":"b0c5c276-36ad-4bed-b4dc-5196626a739a","originalAuthorName":"徐平"},{"authorName":"胡晓军","id":"29e41c88-e48b-46bd-9eeb-de9b8579ca6a","originalAuthorName":"胡晓军"},{"authorName":"于英华","id":"a7f959de-5f59-4fad-9c0b-2aac51ead549","originalAuthorName":"于英华"}],"doi":"10.3969/j.issn.1673-2812.2003.02.028","fpage":"262","id":"a3a556b9-d39a-406c-a95c-a934fc444e49","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"5a6c2a76-1a1a-4f5d-bc90-4b8f65a67008","keyword":"钢纤维聚合物混凝土","originalKeyword":"钢纤维聚合物混凝土"},{"id":"916ca44c-659f-45c9-8e7d-92c320a36422","keyword":"纤维掺量","originalKeyword":"纤维掺量"},{"id":"dfa962fb-d676-49e9-a8b1-dc3fe1353118","keyword":"损伤力学","originalKeyword":"损伤力学"},{"id":"23e4136e-2695-4e05-8ee6-4b8d3c555d15","keyword":"本构模型","originalKeyword":"本构模型"}],"language":"zh","publisherId":"clkxygc200302028","title":"钢纤维聚合物混凝土抗压本构关系","volume":"21","year":"2003"},{"abstractinfo":"本文通过三种不同钢纤维掺量的钢纤维混凝土早期水化热温度和变形实测,得到了不同掺量钢纤维混凝土的水化热温度及温度变形的时程线.试验结果表明:钢纤维混凝土的最高温升随掺量增加而有所增大;水化反应结束后,掺量大的温度曲线最接近外界气温,降温速率也明显增加.应变曲线总体上能反映钢纤维混凝土抗应变能力强于普通混凝土.根据热传导理论,给出了钢纤维掺量与混凝土导温系数的关系,得出钢纤维混凝土有较好的导热性,该特性对水工混凝土结构防止表面裂缝起到良好的作用.","authors":[{"authorName":"杨勇","id":"0199cb15-9460-449c-b3b9-ea53991e96d3","originalAuthorName":"杨勇"},{"authorName":"梅明荣","id":"867626b3-bc41-44fc-bf40-30bf9bceffa6","originalAuthorName":"梅明荣"},{"authorName":"王山山","id":"2b8db8f9-758d-4fd7-bde8-07f24cb3d45b","originalAuthorName":"王山山"}],"doi":"10.3969/j.issn.1673-2812.2006.06.037","fpage":"937","id":"716fc3c9-0c62-4b27-a2fe-15e26ed67cbc","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"a9ca01a1-7d4a-420b-850b-05f80303ae43","keyword":"钢纤维混凝土","originalKeyword":"钢纤维混凝土"},{"id":"114af6a4-2bbb-41a7-bac2-ce88ad09af38","keyword":"温度梯度","originalKeyword":"温度梯度"},{"id":"05271b7f-80cb-44c6-afb3-9100e87d81a9","keyword":"模型试验","originalKeyword":"模型试验"},{"id":"276b86f5-4910-4f10-847e-345e3736ece9","keyword":"热传导率","originalKeyword":"热传导率"}],"language":"zh","publisherId":"clkxygc200606037","title":"钢纤维混凝土早期水化热温度的试验研究","volume":"24","year":"2006"},{"abstractinfo":"探讨了纯不锈钢纤维在加工过程中原料与纺纱的关系,提出了加工纯不锈钢纤维布较为合理的工艺流程、工艺参数及技术条件。","authors":[{"authorName":"曹红梅","id":"2a6ed73b-df22-4965-8170-b3539c0b4d8d","originalAuthorName":"曹红梅"}],"doi":"","fpage":"139","id":"a4b17a5d-f8ad-4a64-8a8d-ef0fdace9203","issue":"4","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"75f0cf4a-b0b6-4c96-bd8a-af58018b9148","keyword":"不锈钢纤维","originalKeyword":"不锈钢纤维"},{"id":"b011adfa-67ec-4968-887d-787ab77dbf67","keyword":"生产","originalKeyword":"生产"},{"id":"d474ad76-3891-47de-88ee-9b58997f9292","keyword":"实践","originalKeyword":"实践"}],"language":"zh","publisherId":"hccllhyyy201504036","title":"不锈钢纤维纯纺纱工艺探讨?","volume":"","year":"2015"},{"abstractinfo":"通过钢纤维混凝土中的钢筋锈蚀试验,比较素混凝土和钢纤维混凝土保护层开裂时间的不同,探讨了钢纤维对混凝土中的钢筋锈蚀性能的影响机理.建立了混凝土保护层开裂前钢筋锈蚀有限元计算模型,分析了钢纤维掺量对保护层锈胀开裂时间的影响.结果表明,掺入钢纤维可以延长钢筋混凝土的使用寿命,有限元计算出的混凝土保护层初裂时间与快速试验结果比较吻合.","authors":[{"authorName":"潘慧敏","id":"f0dd007c-09af-4aec-a084-fe8f39d64461","originalAuthorName":"潘慧敏"},{"authorName":"刘征","id":"49690dfd-e99c-4755-9cac-df902767a3bb","originalAuthorName":"刘征"},{"authorName":"李志业","id":"0d0b57bb-76fa-435c-98d8-9fa427a866b2","originalAuthorName":"李志业"}],"doi":"","fpage":"384","id":"975669a6-c86e-4915-8b3f-436bea588d15","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d1b6bf49-14dc-4770-af71-a44b71fb2633","keyword":"钢纤维混凝土","originalKeyword":"钢纤维混凝土"},{"id":"dc0b1e35-0cf3-491a-aee3-936750c79ed9","keyword":"钢筋锈蚀","originalKeyword":"钢筋锈蚀"},{"id":"14a0a140-df4a-4eea-b66b-e7ef4b0b06e5","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"gsytb201303004","title":"钢纤维对混凝土内钢筋锈蚀性能的影响","volume":"32","year":"2013"}],"totalpage":1041,"totalrecord":10403}