欢迎登录材料期刊网

材料期刊网

高级检索

利用XRD、SEM研究球磨时间对Ag-Zn合金粉末显微组织和内氧化性能的影响.结果表明:球磨初期,晶粒尺寸迅速减小,微观应变急剧增加,球磨25 h后,变化趋于平缓,球磨100 h后,晶粒尺寸和微观应变分别为20 nm和0.55%.Ag-Zn合金粉末在机械球磨过程中经历了片层化、片层结构破裂细化、破裂和冷焊的平衡阶段以及片层组织焊合成团4个阶段.Ag-Zn合金粉末的内氧化速度随球磨时间延长而增加,球磨100 h的粉末在0.5 h内即达到最大氧化程度,与未球磨粉末相比提高了25%.Ag-Zn合金粉末在内氧化过程中,未球磨粉末样品中ZnO呈针状和片状形成于表面且尺寸较大;粉末经机械球磨后氧化,ZnO则主要以针状形式存在于基体中,尺寸较小.生成ZnO产生的体积膨胀,在内氧化区形成压应力,导致银原子向粉末表面扩散形成银球.

Influence of ball-milling time on the microstructure and internal oxidation properties of Ag-Zn alloy powder was investigated by XRD and SEM. The results show that the grain size decreased rapidly while the microstrain increased sharply at the initial stage of ball milling. After ball-milling for 25 h, the change became gentle. After 100 h, the grain size and microstrain were 20 nm and 0.55%, respectively. The milling process may be divided into four stages, i.e. flattening, breaking & refining, balancing of breakage and cold welding, and welded conglomerations. The internal oxidation velocity of Ag-Zn alloy powder increased with the milling time prolonging. The oxidation ratio of Ag-Zn powder milled for 100 h reached the maximum in 0.5 h, which increased by 25% compared with that of the milling-free powders. During internal oxidation, ZnO were grown as spicule and flake with big sizes on the surface of the milling-free powders, while on the surface of milled powders ZnO was shaped mainly as spicule with small sizes. Nodules of virtually pure silver atoms formed on the surface of powder during internal oxidation, which is attributed to the compressive stress caused by the expansion of ZnO in the silver-matrix during internal oxidation.

参考文献

[1] 陈敬超,孙加林,张昆华,杜焰,周晓龙,甘国友.银氧化镉材料的欧盟限制政策与其它银金属氧化物电接触材料的发展[J].电工材料,2002(04):41-44,49.
[2] Joshia P B;Krishnam P S;Patel R H et al.[J].Materials Letters,1997,33:137.
[3] Thomas Schoepf J;Volker Behrens;Thomas Honig et al.[J].IEEE Transactions on Components Packaging and Manufacturing Technology,2002,25(04):656.
[4] 吴春萍,易丹青,李荐,肖来荣,王斌.制备工艺对Ag-ZnO触头材料组织与性能的影响[J].贵金属,2007(02):28-32,36.
[5] Amitabh Vrrma .[J].The International Journal of Powder Metallurgic,1991,27(01):51.
[6] Wu C P;Yi D Q;Li J et al.[J].Journal of Alloys and Compounds,2008,457(01):565.
[7] 张俊红,黄伯云,贺跃辉,鲁世强.Ti-46at%Al机械合金化过程中的显微组织演变[J].稀有金属材料与工程,2002(06):440-444.
[8] 任榕,吴玉程,汤文明,汪峰涛,郑治祥.机械合金化过程中Fe50Al50二元系的结构演变[J].中国有色金属学报,2007(04):580-585.
[9] Suryanarayana C. .Mechanical alloying and milling [Review][J].Progress in materials science,2001(1/2):1-184.
[10] 罗群芳,刘丽琴,王亚平,丁秉钧.机械合金化方法制备银镍触头合金的研究[J].稀有金属材料与工程,2003(04):298-300.
[11] 肖鹏,赵玮兵,梁淑华,范志康.机械合金化法制备不同Cr含量的W-Cr纳米合金粉末[J].中国有色金属学报,2007(11):1779-1784.
[12] 梁淑华,徐磊,方亮,范志康.Al2O3/Cu复合材料内氧化粉末的制备[J].粉末冶金技术,2003(04):201-205.
[13] 梁淑华,徐磊,方亮,范志康.Cu-Al预合金粉末中Al内氧化工艺的分析[J].金属学报,2004(03):309-313.
[14] Zhang D L;Ying D Y .[J].Materials Science and Engineering A,2001,301(01):90.
[15] Guruswamy S;Park S M;Hirth J P et al.[J].Oxidation of Metals,1986,26:77.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%