欢迎登录材料期刊网

材料期刊网

高级检索

对粉末冶金法制备的两种不同钨含量的钨合金材料进行SHPB试验和原位拉伸试验,研究了钨合金中钨含量与其显微组织、断裂方式及力学性能之间的关系.结果表明,在拉伸情况下随着钨含量的增加,钨合金的破坏方式由W-W间开裂转变为钨颗粒开裂,材料由韧性变为脆性.利用Ostwald烧结理论,对两种材料的微观结构进行预测,结果与实验符合较好.利用细观力学模型对所观察的实验结果进行了定量解释.烧结理论和细观力学相结合,可建立材料烧结条件、体积分数及力学性能之间的关系,为材料的设计、制备和力学性能的预测提供理论依据.

Dynamic compression and in-situ tensile tests were carried out for two kinds of W-Ni-Fe alloys with 93wt% and 97wt% tungsten contents fabricated by P/M technique; their microstructures and damage model were examined and discussed. The damage mechanisms for 93wt% W alloy belongs to ductile separation of W-W interface, and that for 97wt% W alloy belongs to initiation and propagation of microcracks inside tungsten grains. On the base of Ostwaid ripening theory for the sintering process, the microstructures of the two kinds of alloys with different tungsten volume fractions under various sintering conditions were predicted, and the results agreed with the tests very well. With the help of Ostwald ripening and micromechanical theory, we set up a relationship for sintering condition, volume fraction of tungsten and mechanical properties to help material design, production and mechanical property prediction.

参考文献

[1] Bao G;Ramesh K T .[J].Acta Metallurgy,1993,41:2711.
[2] Hong S H;Ryum H J et al.[J].Key Engineering Materials,1998,141:453.
[3] Churn K S;German R M .[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1984,15:331.
[4] Rabin B H;German R M .[J].Metall Matrial Trans A,1988,19:1523.
[5] German R M;Olevsky E A .[J].Metall Martial Trans A,1998,29:3057.
[6] Yang S C;Mani S S;German R M .[J].JOM-Journal of the Minerals Metals and Materials Society,1990,42(05):16.
[7] Jiao T;Zhang B P;Zhang H T .[J].Nonferrous Metals,2000,52:76.
[8] Krock R H;Shepard L A .[J].Transactions AIME,1963,227:1127.
[9] Hu G K;Weng G J .[J].Acta Mechanica,2000,140:31.
[10] Woodard R W;Mcdonald I G;Gunner A .[J].Journal of Materials Science Letters,1986,5:413.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%