分别采用柠檬酸溶胶-凝胶法、半干半湿法和高温固相法制备了CaGdAlO4:Eu3+荧光粉, 并用X射线衍射(XRD)分析、场发射扫描电镜(FE-SEM)观察和荧光光谱分析研究了不同制备方法和制备条件对CaGdAlO4:Eu3+形貌、粒径和发光性质的影响. XRD结果表明, 柠檬酸溶胶-凝胶法、半干半湿法和固相法制备CaGdAlO4:Eu3+生成纯相的温度分别为900, 1200和1400 ℃. FE-SEM照片显示CaGdAlO4:Eu3+ 颗粒粒径随温度的升高而增大, 在同一烧结温度下, 粒径大小为柠檬酸溶胶-凝胶法最小, 半干半湿法居中, 高温固相法最大而且团聚现象严重. 以280 nm 近紫外光激发, CaGdAlO4:Eu3+发出明亮的橙红色荧光, 以Eu3+的5D0→7F2跃迁为主, 发光强度随烧结温度的升高而增加, 在1400 ℃烧结温度下, 以半干半湿法得到的样品发光最强. 室温和低温发射谱中Eu3+的5D0→7Fj发射峰的数目都表明: Eu3+ 在CaGdAlO4中只占据偏离反演中心的一种格位.
参考文献
[1] | Jon-Paul R Wells;Mitsuo Yamaga Nobuhiro Kodama;Thomas P J Han .Polarized laser spectroscopy and crystal-field analysis of Er3+ doped CaGdAlO4[J].Journal of Physics:Condensed Matter,1999,11:7545. |
[2] | Smirnov Yu E;Zvereva I A .Cation distribution and interatomic interactions in oxides with heterovalent isomorphism:III.1 complex aluminates LnCaAlO4[J].Zhurnal Organicheskoi Khimii,2001,71:901. |
[3] | Yamaga M;Yosida T;Naitoh T et al.Electron paramagnetic resonance and optical spectroscopy of Ti-doped CaYAlO4[J].Journal of Physics:Condensed Matter,1994,6:4381. |
[4] | Yamaga M;Acfarlane!P I M;Holliday Keith et al.A study of exchange interaction in Cr3+-doped CaY1-xGdxAlO4[J].Journal of Physics:Condensed Matter,1997,9:1575. |
[5] | Wang Wanyan;Yan Xiuli;Wu Xing et al.Study of single-crystal growth of Tm3+:CaYAlO4 cy the floating-zone method[J].Journal of Crystal Growth,2000,219:56. |
[6] | Verdun Horacio R;Thomas Leonard M .Nd:CaYAlO4-a new crystal for solid-state lasers emitting at 1.08 μm[J].Applied Physics Letters,1990,56:608. |
[7] | Souriau J C;Borel C;Wyon Ch et al.Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in CaYAlO4[J].Journal of Luminescence,1994,59:349. |
[8] | Lagatskii A A;Kuleshov N V;Shcherbitskii V G et al.Lasing characteristics of a diode-pumped Nd3+:CaGdAlO4 crystal[J].Quantum Electronics,1997,27:15. |
[9] | Vasylechko L;Kodama N;Matkovskii A et al.Crystal structure and optical spectroscopy of CaGdAlO4:Er single crystal[J].Journal of Alloys and Compounds,2000,300-301:475. |
[10] | William M Yen;Marvin J Weber Mater.Inorganic Phosphors Compositions,Preparation and Optical Properties[M].Boca Raton:CRC Press,2004 |
[11] | Zhou Yonghui;Lin Jun;Yu Min et al.Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re=Ce,Sm,Tb) phosphors[J].Materials Letters,2002,56:628. |
[12] | Marchal M;Escribano P;Carda J B et al.Long-lasting phosphorescent pigments of the type SrAl2O4:Eu2+,R3+ (R=Dy,Nd) synthesized by the sol-gel method[J].Journal of Sol-Gel Science and Technology,2003,26:989. |
[13] | Zhang Junying;Tang Zilong;Zhang Zhongtai et al.Synthesis of nanometer Y2O3:Eu phosphor and its luminescence property[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,2002,334:246. |
[14] | 王介强,陶珍东,孙旭东.无机溶胶凝胶法制取Y2O3纳米微粒[J].中国稀土学报,2003(01):15-18. |
[15] | Blasse G .On the Eu3+ fluorescence of mixed metal oxides.IV.The photoluminescent efficiency of Eu3+-activated oxides[J].Journal of Chemical Physics,1966,45:2356. |
[16] | Voort D van der;Rijk J M E;Doorn R van et al.Luminescence of rare-earth ions in Ca3(BO3)2[J].Materials Chemistry and Physics,1992,31:333. |
[17] | Malta OL;Brito HF;Menezes JFS;Silva FRGE;Alves S;Farias FS;deAndrade AVM .Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)(3) 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model[J].Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter,1997(3):255-268. |
[18] | Thim Gilmar P;Brito Hermi F;Silva Sandra A et al.Preparation and optical properties of trivalent europium doped into cordierite using the sol-gel process[J].Journal of Solid State Chemistry,2003,171:375. |
[19] | Wells Jon-Paul R;Han Thomas P J;Yamaga Mitsuo et al.Disordered laser gain media:Er3+ doped CaGdAlO4 and Ca3Ga2Ge4O14[J].Journal of Luminescence,2000,87-89:1093. |
[20] | Shigeo Shionoya;William M Yen.Phosphor Handbook[M].Boca Raton:CRC Press,1999 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%