欢迎登录材料期刊网

材料期刊网

高级检索

为了改进Ti/RuO_2(0.5)-Co_3O_4(0.5)电极的析氧催化性能,采用热分解法在400℃下制备了稀土Ce改性Ti/RuO_2(0.5)-Co_3_O_4(0.5)氧化物电极,对稀土Ce掺杂量进行了优化.通过开路电压、循环伏安及极化曲线研究了电极在1.0 mol/L KOH溶液中的析氧催化活性.结果表明:稀土Ce掺杂可明显提高电极伏安电荷量、内外活性表面积及电极表面粗糙度,同时能降低析氧反应表观活化能;当其掺杂量为10:4时电极性能最佳,伏安电荷量和表面粗糙度分别高达806 mC/cm~2和3 047.83,析氧反应表观活化能低至15.74 kJ/mol.这主要是稀土Ce具有孔引发剂的作用,可提高活性氧化物晶粒的分散性,使电极活性表面积增加,改善了析氧催化活性.

参考文献

[1] Turner JA .Sustainable hydrogen production[J].Science,2004(5686):972-974.
[2] 申泮文.氢与氢能[M].北京:科学出版社,1988:24-30.
[3] 胡新发,刘全兵,廖世军.钛基涂层不溶性阳极的开发与研究进展[J].材料保护,2008(08):41-45.
[4] Aromaa J;Forsen O .Evaluation of the Electrochemical Activity of a Ti-RuO_2-TiO_2 Permanent Anode[J].Electrochimica Acta,2006,51(27):6104-6110.
[5] Wang X;Tang D;Zhou J G .Microstructure,Morphology and Electrochemical Property of RuO_2 70 SnO_2 30 mol%and RuO_2 30 SnO_2 70 mol% Coatings[J].Journal of Alloys and Compounds,2007,430(1,2):60-66.
[6] Ribeiro J;De Andrade AR .Characterization of RuO2-Ta2O5 coated titanium electrode - Microstructure, morphology, and electrochemical investigation[J].Journal of the Electrochemical Society,2004(10):D106-D112.
[7] Da Silva L A;Boodts J F C;De Faria L A .In situ and ex situ Characterization of the Surface Properties of the RuO_2+Co_3O_4(1-x)System[J].Electrochimica Acta,2000,45(17):2719-2727.
[8] De Faria L A;Boodts J F C;Trasatti S .Electrocatalytic Properties of Ternary Oxides Ru_0.3 Ti_(0.7-x)Ce_xO_2:Oxygen Evolution from Acidic Solution[J].Electrochimica Acta,1996,26(11):1195-1199.
[9] 杨少霞,冯玉杰,万家峰,蔡伟民,祝万鹏,蒋展鹏.CeO2掺杂RuO2/γ-Al2O3催化剂结构与湿式氧化降解苯酚的活性研究[J].高等学校化学学报,2005(05):897-901.
[10] 纪红,周德瑞,周育红.CeO2对Ti基RuO2-SnO2涂层阳极电催化性能的影响[J].稀土,2004(06):41-44.
[11] 王清泉,刘贵昌,景时.稀土Ce对涂层阳极电催化性能的影响[J].材料保护,2005(12):1-3,10.
[12] 张招贤.钛电极工学[M].北京:冶金工业出版社,2000
[13] Ardizzone S;Fregonara G;Trasatti S .Inner'and Outer'Active Surface of RuO_2 Electrodes[J].Electrochimica Acta,1991,36(02):225-241.
[14] Kwang-Wook Kim;Eil-Hee Lee;Jung-Sik Kim;Ki-Ha Shin;Kwang-Ho Kim .Study on the electro-activity and non-stochiometry of a Ru-based mixed oxide electrode[J].Electrochimica Acta,2001(6):915-921.
[15] Vogt H .Note on a Method to Interrelate Inner and Outer Electrode Areas[J].Electrochimica Acta,1994,39(13):1981-1983.
[16] Depauli CP.;Trasatti S. .ELECTROCHEMICAL SURFACE CHARACTERIZATION OF IRO2+SNO2 MIXED OXIDE ELECTROCATALYSTS[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,1995(1/2):161-168.
[17] L. M. Da Silva;L. A. De Faria;J. F. C. Boodts .Determination of the morphology factor of oxide layers[J].Electrochimica Acta,2001(3):395-403.
[18] C. L. P. S. Zanta;A. R. de Andrade;J. F. C. Boodts .Solvent and support electrolyte effects on the catalytic activity of Ti/RuO{sub}2 and Ti/IrO{sub}2 electrodes: oxidation of isosafrole as a probe model[J].Electrochimica Acta,1999(19):3333-3340.
[19] Levine S;Smith A L .Theory of the Differential Capacity of the Oxide/Aqueous Electrolyte Interface[J].Discussions of the Faraday Society,1971,52:290-301.
[20] Da Silva LM.;De Faria LA.;Boodts JFC. .Oxygen evolution at RuO2(x) plus Co3O4(1-x) electrodes from acid solution[J].Electrochimica Acta,2001(9):1369-1375.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%