以马来酸化蓖麻油(MACO)为主要原料,利用无机矿物碳酸钙(CaCO3)粒子作为增强材料制备了环境友好的CaCO3/MACO复合材料及其泡沫塑料,研究了CaCO3对MACO力学性能、动态力学性能和热稳定性的影响,分析了无机粒子与基体间的界面相互作用.研究结果表明:CaCO3含量及其与MACO基体聚合物间的界面黏结是影响复合材料强度的关键因素.随CaCO3含量增加,CaCO3/MACO复合材料的刚性增加,当CaCO3添加量为60wt%时,复合材料的拉伸和弯曲强度达到最优,分别为26.7 MPa和46.2 MPa,基本达到部分通用塑料的水平.动态力1学和热稳定性分析证明:CaCO3作为增强填料可有效提高蓖麻油基塑料的储存模量、玻璃化转变温度和热分解温度.这些行为归于MACO树脂中的羧基和羰基官能团能与CaCO3发生氢键和配位键合作用,形成良好的界面结合.CaCO3也能增强CaCO3/MACO复合泡沫塑料,当泡沫塑料密度为0.24 g/cm3时,加入20wt%的CaCO3,其压缩强度和模量比纯泡沫塑料的分别提高142.0%和211.5%.添加矿物填料可降低材料中石油基原料的用量,降低材料成本,增加复合材料与环境的相容性.
参考文献
[1] | 曾汉民.先进材料设计的若干前瞻性思考[J].材料导报,200216(04):1-7. |
[2] | 吴素平;容敏智;章明秋.大豆油树脂基泡沫塑料的力学性能与生物降解性研究[J].高分子学报,2007(10):993-998. |
[3] | Wu S P;Qiu J F;Rong M Z.Plant oil-based biofoam composites with balanced performance[J].Polymer International,200958(04):403-411. |
[4] | Qiu J F;Zhang M Q;Rong M Z.Highly loaded CoO/ graphene nanocomposites as lithium-ion anodes with superior reversible capacity[J].Journal of Materials Chemistry A,20131:2533-2542. |
[5] | Wang H J;Rong M Z;Zhang M Q.Biodegradable foam plastics based on castor oil[J].Biomacromolecules,20089(02):615-623. |
[6] | Wang H J;Rong M Z;Zhang M Q.Interfacial effects in short sisal fiber/maleated castor oil foam composites[J].COMPOSITE INTERFACES,200815(2-3):95-110. |
[7] | 胡静;容腾;容敏智.蓖麻油基泡沫塑料生物降解分子机制初探[J].高分子学报,2014(02):276-285. |
[8] | Lu Y S;Larock R C.Corn oil-based composites reinforced with continuous glass fibers:fabrication and properties[J].Journal of Applied Polymer Science,2006102(04):3345-3353. |
[9] | 章明秋;容敏智;阮文红.非层状纳米无机粒子/热塑性聚合物复合材料制备方法研究进展[J].复合材料学报,201128(05):1-11. |
[10] | Donnell O;Dweib M A;Wool R P.Natural fiber composites with plant oil-based resin[J].Composites Science and Technology,200464(09):1135-1145. |
[11] | 李瑞欣;张西正;郝庆新.微米级煅烧羟基磷灰石/壳聚糖复合膜的制备及性能[J].复合材料学报,201330(01):103-111. |
[12] | Lu J;Hong C K;Wool R P.Bio-based nanocomposites from functionalized plant oils and layered silicate[J].Journal of Polymer Science Part B,200442(08):1441-1450. |
[13] | Miyagawaa H;Misraa M;Drzala L T.Novel biobased nanocomposites from functionalized vegetable oil and organically-modified layered silicate clay[J].POLYMER,200546(02):445-453. |
[14] | Urama H;Kuwabara M;Tsujimoto T.Green nanocomposites from renewable resources:plant oil-clay hybrid materials[J].Chemistry of Materials,200315(13):2492-2494. |
[15] | Tsujimoto T;Uyama H;Kobayshi S.Green nanomomposites from renewnable resources:biodegradable plant oil-silica hybrid coatings[J].Macromolecular Rapid Communications,200324(12):711-714. |
[16] | Liu Z;Erhan S Z;Xu J Y.Preparation,characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites[J].POLYMER,200546(23):10119-10127. |
[17] | GB/T16421-1996.塑料拉伸性能小试样试验方法[S].北京:中国标准出版社,1986. |
[18] | GB/T 9341-2000.塑料弯曲性能试验方法[S].北京:中国标准出版社,2000. |
[19] | GB/T 2571-1995.树脂浇铸体冲击试验方法[S].北京:中国标准出版社,1995. |
[20] | GB 8813-88.硬质泡沫塑料压缩试验方法[S].北京:中国标准出版社,1988. |
[21] | Nielsen E.Simple theory of stress-strain properties of filled polymers[J].Journal of Applied Polymer Science,196610(01):97-103. |
[22] | 周菊兴;董永祺.不饱和聚酯树脂--生产及应用[M].北京:化学工业出版社,2011:318. |
[23] | 马之庚;陈开来.工程塑料手册--应用与测试卷[M].北京:机械工业出版社,2004:1049. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%