欢迎登录材料期刊网

材料期刊网

高级检索

以马来酸化蓖麻油(MACO)为主要原料,利用无机矿物碳酸钙(CaCO3)粒子作为增强材料制备了环境友好的CaCO3/MACO复合材料及其泡沫塑料,研究了CaCO3对MACO力学性能、动态力学性能和热稳定性的影响,分析了无机粒子与基体间的界面相互作用.研究结果表明:CaCO3含量及其与MACO基体聚合物间的界面黏结是影响复合材料强度的关键因素.随CaCO3含量增加,CaCO3/MACO复合材料的刚性增加,当CaCO3添加量为60wt%时,复合材料的拉伸和弯曲强度达到最优,分别为26.7 MPa和46.2 MPa,基本达到部分通用塑料的水平.动态力1学和热稳定性分析证明:CaCO3作为增强填料可有效提高蓖麻油基塑料的储存模量、玻璃化转变温度和热分解温度.这些行为归于MACO树脂中的羧基和羰基官能团能与CaCO3发生氢键和配位键合作用,形成良好的界面结合.CaCO3也能增强CaCO3/MACO复合泡沫塑料,当泡沫塑料密度为0.24 g/cm3时,加入20wt%的CaCO3,其压缩强度和模量比纯泡沫塑料的分别提高142.0%和211.5%.添加矿物填料可降低材料中石油基原料的用量,降低材料成本,增加复合材料与环境的相容性.

参考文献

[1] 曾汉民.先进材料设计的若干前瞻性思考[J].材料导报,200216(04):1-7.
[2] 吴素平;容敏智;章明秋.大豆油树脂基泡沫塑料的力学性能与生物降解性研究[J].高分子学报,2007(10):993-998.
[3] Wu S P;Qiu J F;Rong M Z.Plant oil-based biofoam composites with balanced performance[J].Polymer International,200958(04):403-411.
[4] Qiu J F;Zhang M Q;Rong M Z.Highly loaded CoO/ graphene nanocomposites as lithium-ion anodes with superior reversible capacity[J].Journal of Materials Chemistry A,20131:2533-2542.
[5] Wang H J;Rong M Z;Zhang M Q.Biodegradable foam plastics based on castor oil[J].Biomacromolecules,20089(02):615-623.
[6] Wang H J;Rong M Z;Zhang M Q.Interfacial effects in short sisal fiber/maleated castor oil foam composites[J].COMPOSITE INTERFACES,200815(2-3):95-110.
[7] 胡静;容腾;容敏智.蓖麻油基泡沫塑料生物降解分子机制初探[J].高分子学报,2014(02):276-285.
[8] Lu Y S;Larock R C.Corn oil-based composites reinforced with continuous glass fibers:fabrication and properties[J].Journal of Applied Polymer Science,2006102(04):3345-3353.
[9] 章明秋;容敏智;阮文红.非层状纳米无机粒子/热塑性聚合物复合材料制备方法研究进展[J].复合材料学报,201128(05):1-11.
[10] Donnell O;Dweib M A;Wool R P.Natural fiber composites with plant oil-based resin[J].Composites Science and Technology,200464(09):1135-1145.
[11] 李瑞欣;张西正;郝庆新.微米级煅烧羟基磷灰石/壳聚糖复合膜的制备及性能[J].复合材料学报,201330(01):103-111.
[12] Lu J;Hong C K;Wool R P.Bio-based nanocomposites from functionalized plant oils and layered silicate[J].Journal of Polymer Science Part B,200442(08):1441-1450.
[13] Miyagawaa H;Misraa M;Drzala L T.Novel biobased nanocomposites from functionalized vegetable oil and organically-modified layered silicate clay[J].POLYMER,200546(02):445-453.
[14] Urama H;Kuwabara M;Tsujimoto T.Green nanocomposites from renewable resources:plant oil-clay hybrid materials[J].Chemistry of Materials,200315(13):2492-2494.
[15] Tsujimoto T;Uyama H;Kobayshi S.Green nanomomposites from renewnable resources:biodegradable plant oil-silica hybrid coatings[J].Macromolecular Rapid Communications,200324(12):711-714.
[16] Liu Z;Erhan S Z;Xu J Y.Preparation,characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites[J].POLYMER,200546(23):10119-10127.
[17] GB/T16421-1996.塑料拉伸性能小试样试验方法[S].北京:中国标准出版社,1986.
[18] GB/T 9341-2000.塑料弯曲性能试验方法[S].北京:中国标准出版社,2000.
[19] GB/T 2571-1995.树脂浇铸体冲击试验方法[S].北京:中国标准出版社,1995.
[20] GB 8813-88.硬质泡沫塑料压缩试验方法[S].北京:中国标准出版社,1988.
[21] Nielsen E.Simple theory of stress-strain properties of filled polymers[J].Journal of Applied Polymer Science,196610(01):97-103.
[22] 周菊兴;董永祺.不饱和聚酯树脂--生产及应用[M].北京:化学工业出版社,2011:318.
[23] 马之庚;陈开来.工程塑料手册--应用与测试卷[M].北京:机械工业出版社,2004:1049.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%