欢迎登录材料期刊网

材料期刊网

高级检索

以Al2O3颗粒为增强相,分别采用内氧化法和粉末冶金法制备了Al2O3/Cu复合材料,并在HST100型载流高速试验机上进行了载流摩擦磨损性能测试,研究了制备工艺对Al2O3/Cu复合材料载流摩擦性能的影响.结果表明,内氧化法制备的Al2O3/Cu复合材料的导电率和硬度均高于粉末冶金法制备的Al2O3/Cu复合材料,且内氧化法比粉末冶金法制备的Al2O3/Cu复合材料具有更低的磨损率和摩擦系数.微观组织观察表明,内氧化法制备的Al2O3/Cu复合材料内部Al2O3颗粒分布均匀,且Al2O3颗粒与铜基体的界面结合整齐致密无污染,这是内氧化法比粉末冶金法制备的Al2O3/Cu复合材料具有更优抗载流摩擦磨损性能的主要原因.

参考文献

[1] Xianhui Wang;Shuhua Liang;Ping Yang;Zhikang Fan .Effect of Milling Time on Electrical Breakdown Behavior of Al_2O_3/Cu Composite[J].Journal of Materials Engineering and Performance,2010(6):906-911.
[2] 李美霞,罗骥,郭志猛,方哲成.高塑高强纳米Al2O3-Cu复合材料的组织与性能[J].材料热处理学报,2010(04):14-17.
[3] Liu Ruihua,Song Kexing,Jia Shuguo,Xu Xiaofeng,Gao Jianxin,Guo Xiuhua.Morphology and Frictional Characteristics Under Electrical Currents of Al203/Cu Composites Prepared by Internal Oxidation[J].中国航空学报(英文版),2008(03):281-288.
[4] Baohong Tian;Ping Liu;Kexing Song .Microstructure and properties at elevated temperature of a nano-Al_2O_3 particles dispersion-strengthened copper base composite[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(0):705-710.
[5] LIANG Shu-hua;FAN Zhi-kang;XU Lei et al.Kinetic analysis on Al2O3/Cu composite prepared by mechanical activation and internal oxidation[J].Composites Part A: Applied Science and Manufacturing,2004,35(12):1441-1446.
[6] Shou-Yi Chang;Chi-Fang Chen;Su-Jien Lin .Electrical resistivity of metal matrix composites[J].Acta materialia,2003(20):6291-6302.
[7] Tatar, C;Ozdemir, N .Investigation of thermal conductivity and microstructure of the alpha-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method[J].Physica, B. Condensed Matter,2010(3):896-899.
[8] Viseslava Rajkovic;Dusan Bozic;Milan T. Jovanovic .Effects of copper and Al_2O_3 particles on characteristics of Cu-Al_2O_3 composites[J].Materials & design,2010(4):1962-1970.
[9] 程建奕,敖学文,汪明朴,郭明星.Al_2O_3弥散粒子对Cu-Al_2O_3合金高温退火显微组织的影响[J].中国有色金属学报,2009(11):1928-1933.
[10] V. Rajkovic;D. Bozic;M. Popovic .The Influence of Powder Particle Size on Properties of Cu-Al_2O_3 Composites[J].Science of sintering,2009(2):185-192.
[11] 刘德宝,刘双进,崔春翔.添加铝对AlNp/Cu复合材料组织与热性能的影响[J].材料热处理学报,2007(02):7-11.
[12] Farid Akhtar;Syed Javid Askari;Khadijah Ali Shah .Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites[J].Materials Characterization,2009(4):327-336.
[13] SONG Ke-xing;XING Jian-dong;DONG Qi-ming et al.Optimization of the processing parameters during internal oxidation of Cu-Al alloy powders using an artificial neural network[J].materials & design,2005,26(04):337-341.
[14] K. Song;P. Liu;B. Tian .Stabilization of Nano-Al_2O_(3p)/Cu Composite after High Temperature Annealing Treatment[J].Materials Science Forum,2005(Pt.2):993-996.
[15] T. Ding;G. X. Chen;J. Bu;W. H. Zhang .Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph-catenary systems[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2011(9/10):1629-1636.
[16] GUO Xiu-hua;SONG Ke-xing;LIANG Shu-hua et al.Effect of electrical current on wear rate of nano-Al2O3p/Cu composite[J].Advanced Materials Research,2010,97-101:717-723.
[17] 徐晓峰,宋克兴,刘瑞华,国秀花.内氧化法制备Al2O3/Cu复合材料电滑动磨损性能的研究[J].摩擦学学报,2008(01):83-87.
[18] I. Yasar;A. Canakci;F. Arslan .The effect of brush spring pressure on the wear behaviour of copper-graphite brushes with electrical current[J].Tribology International,2007(9):1381-1386.
[19] N. Selvakumar;S.C. Vettivel .Thermal, electrical and wear behavior of sintered Cu-W nanocomposite[J].Materials & design,2013(Apr.):16-25.
[20] Huang, S.;Feng, Y.;Liu, H.;Ding, K.;Qian, G..Electrical sliding friction and wear properties of Cu-MoS_2-graphite-WS_2 nanotubes composites in air and vacuum conditions[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:685-692.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%