{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用RFI工艺分别成型了648和5228A环氧树脂基复合材料层合板,其增强材料为碳纤维无屈曲织物,铺层方式为[(0,90)/(+45)]s;测试了两组层舍板的拉伸性能、弯曲性能和层间剪切性能并做了比较分析;对破坏形式和机理进行了探讨.结果表明:5228A相对于648环氧树脂膜有较宽的低黏度区域,较长的凝胶时间;5228A与648层合板相比,拉伸强度高106%,拉伸模量、泊松比接近;弯曲强度高58%,弯曲模量高16%;层间剪切强度高62%.","authors":[{"authorName":"马立","id":"95c07a76-9ac4-48dc-9d40-285d22b9b573","originalAuthorName":"马立"}],"doi":"10.3969/j.issn.1007-2330.2008.02.018","fpage":"69","id":"3874c3ac-5ade-4e6a-a947-a22796f47092","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"44b767fd-84ba-4b35-869f-707b7bcd0086","keyword":"RFI","originalKeyword":"RFI"},{"id":"75381b0d-0ef7-464f-a329-70c807a330fa","keyword":"无屈曲织物","originalKeyword":"无屈曲织物"},{"id":"c70a4f25-d2c2-4dc4-88d7-848c3c6c32fd","keyword":"648环氧树脂基复合材料","originalKeyword":"648环氧树脂基复合材料"},{"id":"a02b93f4-36be-4d40-bd86-d91ede4558a4","keyword":"5228A环氧树脂基复合材料","originalKeyword":"5228A环氧树脂基复合材料"},{"id":"474bde71-7791-4096-9340-59cf3bfe2af7","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"yhclgy200802018","title":"RFI工艺成型两种环氧树脂基复合材料性能比较","volume":"38","year":"2008"},{"abstractinfo":"主要研究了低成本树脂膜熔渗工艺(RFI)5228A高温环氧树脂和标准5228A环氧树脂的粘温性能和制膜性能,然后将RFI专用5228A/CCF300复合材料的力学性能与标准5228A/CCF300的力学性能进行对比.研究结果表明,经过对标准5228A环氧树脂的配方进行适当的调整而制成的RFI专用5228A树脂的粘温性能及制膜性能能够满足RFI工艺要求.其浸渍工艺为120~130℃,工艺期为60min,RFI专用5228A/CCF300碳纤维复合材料的力学性能值的批次稳定性好且与标准5228A/CCF300复合材料相当.","authors":[{"authorName":"陈蔚","id":"c0a74853-6c54-4ee2-93f2-a626b7644b51","originalAuthorName":"陈蔚"},{"authorName":"张晨乾","id":"3d54baf7-7641-4407-ad56-1e9daf08ab90","originalAuthorName":"张晨乾"},{"authorName":"成理","id":"3b8397e5-c5fa-4ef3-81c1-1632548abbab","originalAuthorName":"成理"},{"authorName":"李察","id":"d0c369ba-fb8e-4c16-bd1c-cdb1a3205f3f","originalAuthorName":"李察"},{"authorName":"叶宏军","id":"a045b657-d06b-4919-889c-d6eb485c42c4","originalAuthorName":"叶宏军"}],"doi":"","fpage":"38","id":"35b385eb-8d86-4ddf-b55e-559dee64c1c9","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"5c527e57-1856-4074-9144-f8946ff38c34","keyword":"5228A环氧树脂,树脂膜熔渗透成型","originalKeyword":"5228A环氧树脂,树脂膜熔渗透成型"},{"id":"fbf23f1d-734b-458f-8edc-02efd16d52b1","keyword":"粘温性能","originalKeyword":"粘温性能"},{"id":"167e0052-82fb-4798-9601-18761bbd46fc","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"blgfhcl201505007","title":"RFI用5228A环氧树脂的制备及其对5228A/CCF300复合材料力学性能的影响","volume":"","year":"2015"},{"abstractinfo":"采用经过改性的低成本树脂膜熔渗工艺(RFI)用5228A高温环氧树脂体系,以国产纤维CCF300碳纤维为增强材料,对改性后的RFI专用5228A环氧树脂体系的RFI工艺参数进行研究.对5228A树脂体系RFI成型的全部过程中渗透浸渍纤维和树脂固化成型两个基本工艺的树脂体系的黏温性能、浸渍压力、CCF300纤维预制体的压缩特性以及固化动力学和固化工艺参数等因素的研究表明:改性后的RFI专用5228A环氧树脂体系能够完全满足RFI工艺的要求.RFI专用CCF300/5228A碳纤维复合材料的最佳浸渍工艺为(125±3)℃,(0.1±0.02) MPa下,保温90min;树脂固化成型的最佳工艺参数为:加压至(0.5±0.02)MPa,然后升温至(190±3)℃,恒温90min.整个工艺过程中的升温速率保持在1 ~1.5℃/min之间.","authors":[{"authorName":"陈蔚","id":"9dd0c352-bf99-499a-a808-e41e5c1f2cca","originalAuthorName":"陈蔚"},{"authorName":"成理","id":"89469114-c4f4-4274-9dbf-0e79b409fa3d","originalAuthorName":"成理"},{"authorName":"张晨乾","id":"7dd4b666-1c73-4100-8fdb-662e7d610591","originalAuthorName":"张晨乾"},{"authorName":"李察","id":"6d2a727a-dcb4-4473-bc62-3c79b4a9cca4","originalAuthorName":"李察"},{"authorName":"叶宏军","id":"7c866263-416d-4cff-afcd-846975d284d5","originalAuthorName":"叶宏军"}],"doi":"10.11868/j.issn.1005-5053.2014.6.007","fpage":"54","id":"df29f9d3-cd96-4aea-aaa0-40c061c5ab18","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"70d62e01-ef09-4295-9f6f-989452249db5","keyword":"改性5228A环氧树脂","originalKeyword":"改性5228A环氧树脂"},{"id":"fa434195-68ee-484c-8272-ad25ca22b855","keyword":"树脂膜熔渗透成型","originalKeyword":"树脂膜熔渗透成型"},{"id":"a2f6e76b-a0f5-4ca0-b2a0-3469793f6905","keyword":"固化动力学","originalKeyword":"固化动力学"},{"id":"bc20b172-8843-4bcc-b867-99fbecd68ee0","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"hkclxb201406007","title":"CCF300/5228A复合材料RFI成型工艺参数","volume":"34","year":"2014"},{"abstractinfo":"环氧树脂5228A固化诱导5228A/PAEK共混体系相分离,随着PAEK含量增加,固化机理由成核-生长机理向旋节线分相转化,在微观相形貌上表现为海岛-双连续-相反转结构形式的转变,富PAEK热塑相在脆断作用载荷下的塑性变形以及部分富5228A热固微球结构的撕裂,预示着两相之间构建的良好界面;通过PAEK膜对CCF300/5228A复合材料“离位”增韧,重新构建了其特定的周期性微结构;动态热机械分析结果表明,“离位”增韧后复材的玻璃化转变温度略有降低,但基本不会影响原5228A基体树脂的应用温度范围;冲击试验结果表明,无论是损伤阻抗还是冲击后剩余压缩强度(CAI)均获得大幅度提高.","authors":[{"authorName":"刘立朋","id":"88e3cdbf-2ceb-4d4f-b5d7-42f0f3a93c4b","originalAuthorName":"刘立朋"},{"authorName":"张明","id":"58179e42-5a40-4c29-aa50-17f58dcd55df","originalAuthorName":"张明"},{"authorName":"安学锋","id":"1d866f6b-2bdc-4af0-85d0-df5b21ae3b17","originalAuthorName":"安学锋"},{"authorName":"周玉敬","id":"eb6f6f9f-7dcb-472c-b8d7-d6ba127b76ab","originalAuthorName":"周玉敬"},{"authorName":"唐邦路","id":"848393ae-b191-405f-ac28-100b2ca2a636","originalAuthorName":"唐邦路"},{"authorName":"益小苏","id":"02460606-0d56-4d0a-ae29-c8b9ed1fc3cc","originalAuthorName":"益小苏"}],"doi":"10.3969/j.issn.1001-4381.2010.z1.016","fpage":"77","id":"3a103e7a-cd74-447b-bfbe-feed657824f2","issue":"z1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"0f144cd7-172c-4b5a-9e3c-a2ee87d4517c","keyword":"成核-生长机理","originalKeyword":"成核-生长机理"},{"id":"e65b99aa-1563-4694-8d4e-4e5970719e1c","keyword":"旋节线分相","originalKeyword":"旋节线分相"},{"id":"84cbfa83-f36e-4ecd-a0f6-2e8cc43b7ae6","keyword":"“离位”增韧","originalKeyword":"“离位”增韧"},{"id":"c19dfc1e-e945-4f79-ac72-8490dfab5eee","keyword":"损伤阻抗","originalKeyword":"损伤阻抗"},{"id":"03bd4164-9c7c-4923-8a44-335abb805ec4","keyword":"冲击后剩余压缩强度","originalKeyword":"冲击后剩余压缩强度"}],"language":"zh","publisherId":"clgc2010z1016","title":"CCF300/5228A复合材料层合板“离位”增韧研究","volume":"","year":"2010"},{"abstractinfo":"借助流变仪和差示扫描量热仪分析5228A环氧树脂膜的性能,以此为参考制定树脂膜渗透成型工艺(RFI)的固化制度;制备并测试增强材料为T700-12k碳纤维无屈曲织物(NCF)、铺层方式为[(0,90)/(±45)]s的层合板力学性能,其层间剪切强度比相应的无纬布层合板高25.3%;在层合板研究的基础上成功研制了规格为1000×200×37mm的帽形梁;利用超声波无损检测和金相显微检查等手段检测帽形梁的质量,检测结果显示,帽形梁材质致密、内部无明显缺陷,将应用于某型号卫星主承力结构.研究表明,5228A环氧树脂膜具有良好的工艺性,RFI工艺能够应用于复合材料复杂结构件的制造.","authors":[{"authorName":"马立","id":"7cd32188-ef64-4ddd-bd42-a388cba3cfa2","originalAuthorName":"马立"}],"doi":"10.3969/j.issn.1003-0999.2008.01.006","fpage":"21","id":"7b9bf193-2a23-4c20-978c-43d014730e6f","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"fac2b34b-12a0-4a42-a327-53eaba0a02d0","keyword":"无屈曲织物","originalKeyword":"无屈曲织物"},{"id":"f76414e8-fecb-4e67-bf91-0a0ae589a95b","keyword":"树脂膜渗透成型工艺","originalKeyword":"树脂膜渗透成型工艺"},{"id":"bdf2c505-7377-41e9-bf2c-b97073459353","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"8a9f68c1-ab91-4b22-af82-fd4ca32eb86b","keyword":"帽形梁","originalKeyword":"帽形梁"}],"language":"zh","publisherId":"blgfhcl200801006","title":"RFI工艺成型碳NCF/环氧5228A复合材料研究","volume":"","year":"2008"},{"abstractinfo":"针对T800/5228A复合材料体系,采用改性聚芳醚酮(PAEK)增韧膜进行层间韧化,设计T800/5228E材料体系.冷场发射扫描电镜显示,T800/5228E层间具有富5228A/富PAEK双连续相结构.张开(Ⅰ)型与剪切(Ⅱ)型韧性试验表明,相比于T800/522A,T800/5228E的GⅠc与GⅡc数值分别提高了68.01%与30.97%,破坏断面显示“钉铆”效应,大量微裂纹以及富PAEK相塑性变形可能主导了上述增韧效果,而张开(Ⅰ)型相比于剪切(Ⅱ)型破坏模式更有利于提供富PAEK组分塑性变形空间则可能是GⅠc改善效果更佳的缘由.","authors":[{"authorName":"刘立朋","id":"9f3dad4d-961d-4151-94db-20ab97794aa8","originalAuthorName":"刘立朋"},{"authorName":"益小苏","id":"abc5835a-fdfe-4fd9-a76e-16eb6f9ba9b2","originalAuthorName":"益小苏"},{"authorName":"安学锋","id":"cac3c2e2-5094-47fd-9577-c207727d0e9b","originalAuthorName":"安学锋"},{"authorName":"张明","id":"64681b78-f239-4439-bdc6-082a79ff126b","originalAuthorName":"张明"},{"authorName":"叶宏军","id":"5b088671-d9c6-400d-8a34-4be4f8b72104","originalAuthorName":"叶宏军"}],"doi":"10.3969/j.issn.1007-2330.2015.02.009","fpage":"37","id":"766dcd7c-f0f8-473f-b787-3f0899830795","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"6dcc0459-18db-4428-81eb-8affc07f0566","keyword":"层间韧化","originalKeyword":"层间韧化"},{"id":"9e4fa08c-212d-4f38-9db8-919af551471a","keyword":"相结构","originalKeyword":"相结构"},{"id":"37836038-80d7-4eb7-8d9c-5001fee9ea57","keyword":"张开(Ⅰ)型断裂","originalKeyword":"张开(Ⅰ)型断裂"},{"id":"c36c38c0-c9e7-4500-b9b2-0ea5e68795b4","keyword":"剪切(Ⅱ)型断裂","originalKeyword":"剪切(Ⅱ)型断裂"}],"language":"zh","publisherId":"yhclgy201502009","title":"T800/5228A复合材料层间增韧改性","volume":"45","year":"2015"},{"abstractinfo":"本文采用高树脂含量的5228A预浸料作为胶接层制备出无胶膜蜂窝夹芯结构,通过超声无损检测、滚筒剥离断面形貌及滚筒剥离强度测试等分析了无胶膜蜂窝夹芯结构粘接性能随成型压力及胶接层树脂含量的变化规律.研究表明,5228A树脂体系具有可控的流变特性,可适用于无胶膜蜂窝夹芯结构的制备;5228A树脂基预浸料具有良好的工艺性能,所制备的无胶膜蜂窝夹芯结构内部质量良好,蒙皮及蜂窝的粘结性能优良;蜂窝夹芯结构滚筒剥离强度随成型压力提高而提高,蜂窝夹芯结构滚筒剥离强度随胶接层树脂含量的升高而提高.","authors":[{"authorName":"王振林","id":"a996df29-d65a-4b85-bfd3-ea9afe4829c5","originalAuthorName":"王振林"}],"doi":"","fpage":"97","id":"e70501fc-71a6-4b2c-b6ac-357e647b994b","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/imgid":"03bd4164-9c7c-4923-8a44-335abb805ec4","keyword":"冲击后剩余压缩强度","originalKeyword":"冲击后剩余压缩强度"}],"language":"zh","publisherId":"clgc2010z1016","title":"CCF300/5228A复合材料层合板“离位”增韧研究","volume":"","year":"2010"},{"abstractinfo":"借助流变仪和差示扫描量热仪分析5228A环氧树脂膜的性能,以此为参考制定树脂膜渗透成型工艺(RFI)的固化制度;制备并测试增强材料为T700-12k碳纤维无屈曲织物(NCF)、铺层方式为[(0,90)/(±45)]s的层合板力学性能,其层间剪切强度比相应的无纬布层合板高25.3%;在层合板研究的基础上成功研制了规格为1000×200×37mm的帽形梁;利用超声波无损检测和金相显微检查等手段检测帽形梁的质量,检测结果显示,帽形梁材质致密、内部无明显缺陷,将应用于某型号卫星主承力结构.研究表明,5228A环氧树脂膜具有良好的工艺性,RFI工艺能够应用于复合材料复杂结构件的制造.","authors":[{"authorName":"马立","id":"7cd32188-ef64-4ddd-bd42-a388cba3cfa2","originalAuthorName":"马立"}],"doi":"10.3969/j.issn.1003-0999.2008.01.006","fpage":"21","id":"7b9bf193-2a23-4c20-978c-43d014730e6f","issue":"1","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"fac2b34b-12a0-4a42-a327-53eaba0a02d0","keyword":"无屈曲织物","originalKeyword":"无屈曲织物"},{"id":"f76414e8-fecb-4e67-bf91-0a0ae589a95b","keyword":"树脂膜渗透成型工艺","originalKeyword":"树脂膜渗透成型工艺"},{"id":"bdf2c505-7377-41e9-bf2c-b97073459353","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"8a9f68c1-ab91-4b22-af82-fd4ca32eb86b","keyword":"帽形梁","originalKeyword":"帽形梁"}],"language":"zh","publisherId":"blgfhcl200801006","title":"RFI工艺成型碳NCF/环氧5228A复合材料研究","volume":"","year":"2008"},{"abstractinfo":"针对T800/5228A复合材料体系,采用改性聚芳醚酮(PAEK)增韧膜进行层间韧化,设计T800/5228E材料体系.冷场发射扫描电镜显示,T800/5228E层间具有富5228A/富PAEK双连续相结构.张开(Ⅰ)型与剪切(Ⅱ)型韧性试验表明,相比于T800/522A,T800/5228E的GⅠc与GⅡc数值分别提高了68.01%与30.97%,破坏断面显示“钉铆”效应,大量微裂纹以及富PAEK相塑性变形可能主导了上述增韧效果,而张开(Ⅰ)型相比于剪切(Ⅱ)型破坏模式更有利于提供富PAEK组分塑性变形空间则可能是GⅠc改善效果更佳的缘由.","authors":[{"authorName":"刘立朋","id":"9f3dad4d-961d-4151-94db-20ab97794aa8","originalAuthorName":"刘立朋"},{"authorName":"益小苏","id":"abc5835a-fdfe-4fd9-a76e-16eb6f9ba9b2","originalAuthorName":"益小苏"},{"authorName":"安学锋","id":"cac3c2e2-5094-47fd-9577-c207727d0e9b","originalAuthorName":"安学锋"},{"authorName":"张明","id":"64681b78-f239-4439-bdc6-082a79ff126b","originalAuthorName":"张明"},{"authorName":"叶宏军","id":"5b088671-d9c6-400d-8a34-4be4f8b72104","originalAuthorName":"叶宏军"}],"doi":"10.3969/j.issn.1007-2330.2015.02.009","fpage":"37","id":"766dcd7c-f0f8-473f-b787-3f0899830795","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"6dcc0459-18db-4428-81eb-8affc07f0566","keyword":"层间韧化","originalKeyword":"层间韧化"},{"id":"9e4fa08c-212d-4f38-9db8-919af551471a","keyword":"相结构","originalKeyword":"相结构"},{"id":"37836038-80d7-4eb7-8d9c-5001fee9ea57","keyword":"张开(Ⅰ)型断裂","originalKeyword":"张开(Ⅰ)型断裂"},{"id":"c36c38c0-c9e7-4500-b9b2-0ea5e68795b4","keyword":"剪切(Ⅱ)型断裂","originalKeyword":"剪切(Ⅱ)型断裂"}],"language":"zh","publisherId":"yhclgy201502009","title":"T800/5228A复合材料层间增韧改性","volume":"45","year":"2015"},{"abstractinfo":"本文采用高树脂含量的5228A预浸料作为胶接层制备出无胶膜蜂窝夹芯结构,通过超声无损检/span>基复合材料的微波固化研究","volume":"","year":"2012"},{"abstractinfo":"分析了环氧树脂基导热绝缘复合材料的导热机理,主要从填料的种类、粒径、用量、表面处理及复配等方面综述了环氧树脂基高导热绝缘复合材料的研究进展,并对环氧树脂基导热绝缘复合材料的应用前景及重点研究方向进行了展望.","authors":[{"authorName":"胡慧慧","id":"27f6e0c7-768b-4da8-b7fc-82909ff4bed7","originalAuthorName":"胡慧慧"},{"authorName":"李凡","id":"0fb280ba-37b0-477e-8077-dc301564b848","originalAuthorName":"李凡"},{"authorName":"李立群","id":"b8b591b3-d12f-4a75-bf4b-0d1b215b2842","originalAuthorName":"李立群"}],"doi":"10.3969/j.issn.1009-9239.2011.05.008","fpage":"27","id":"d9797d00-028b-4d87-9c66-295def378492","issue":"5","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"8532c269-5d2a-4071-9ba2-424e74048db1","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"119c48d3-2093-4594-8ddc-0ebdd9fd4971","keyword":"导热系数","originalKeyword":"导热系数"},{"id":"eb840d2a-679a-4f77-b126-0b84ded681c3","keyword":"导热机理","originalKeyword":"导热机理"},{"id":"ee0f7608-6811-4ead-a79b-12099bdabc09","keyword":"绝缘","originalKeyword":"绝缘"}],"language":"zh","publisherId":"jycltx201105008","title":"环氧树脂基导热绝缘复合材料的研究进展","volume":"44","year":"2011"}],"totalpage":8104,"totalrecord":81038}