欢迎登录材料期刊网

材料期刊网

高级检索

以Mg-Zn-Gd准晶中间合金为增强相,AZ31镁合金为基体合金,采用多次循环塑性变形技术制各准晶增强镁基复合材料,并在低载荷条件下对合金和复合材料进行耐磨性能研究.结果表明:当变形次数为250次时,准晶中间合金含量为10%(质量分数)的复合材料中第二相分布最为均匀;AZ31镁合金和复合材料的摩擦因数均随载荷的增加而略有降低;高热稳定性及高硬度准晶的加入有效提高复合材料的耐磨性能.

参考文献

[1] 吴远志;严红革;朱素琴;陈吉华;刘先兰;刘安民.多向锻造ZK60镁合金组织和性能的均匀性[J].中国有色金属学报,2014(2):310-316.
[2] K. K. Ajith Kumar;U. T. S. Pillai;B. C. Pai;M. Chakraborty.Dry sliding wear behaviour of Mg-Si alloys[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20131/2(1/2):56-64.
[3] Zhang, YB;Yu, SR;Luo, YR;Hu, HX.Friction and wear behavior of as-cast Mg-Zn-Y quasicrystal materials[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):59-65.
[4] QI Qing-ju.Evaluation of sliding wear behavior of graphite particle-containing magnesium alloy composites[J].中国有色金属学会会刊(英文版),2006(05):1135-1140.
[5] H. S. Arora;H. Singh;B. K. Dhindaw.Wear behaviour of a Mg alloy subjected to friction stir processing[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20131/2(1/2):65-77.
[6] B.V. Manoj Kumar;Bikramjit Basu;V.S.R. Murthy.The role of tribochemistry on fretting wear of Mg-SiC particulate composites[J].Composites, Part A. Applied science and manufacturing,20051(1):13-23.
[7] C. Y. H. Lim;S. C. Lim;M. Gupta.Wear behaviour of SiCp-reinforced magnesium matrix composites[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20031/6(1/6):629-637.
[8] Lehua Qi;Juntao Guan;Jian Liu;Jiming Zhou;Xinliang Wei.Wear behaviors of C_f/Mg composites fabricated by extrusion directly following vacuum pressure infiltration technique[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20131/2(1/2):127-133.
[9] 金培鹏;丁雨田;刘孝根;王金辉;王府.硼酸镁晶须增强镁基复合材料的摩擦性能及磨损行为[J].中国有色金属学报,2009(3):452-458.
[10] 杜军;李文芳;刘耀辉;苗耀新.AZ91镁合金及其Al2O3纤维-石墨颗粒混杂增强复合材料的滑动摩擦磨损性能研究[J].摩擦学学报,2004(4):341-345.
[11] A. Banerji;H. Hu;A. T. Alpas.Sliding wear mechanisms of magnesium composites AM60 reinforced with Al_2O_3 fibres under ultra-mild wear conditions[J].Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,20131/2(1/2):626-635.
[12] Liu, J. F.;Yang, Z. Q.;Ye, H. Q..In situ transmission electron microscopy investigation of quasicrystal-crystal transformations in Mg-Zn-Y alloys[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2015:179-188.
[13] Jianhui Li;Wenbo Du;Shubo Li;Zhaohui Wang.Tensile and creep behaviors of Mg–5Zn–2.5Er alloy improved by icosahedral quasicrystal[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20104/5(4/5):1255-1259.
[14] Yingbo Zhang;Sirong Yu;Yulai Song.Microstructures and mechanical properties of quasicrystal reinforced Mg matrix composites[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20081/2(1/2):575-579.
[15] Wang, X.;Du, W.;Wang, Z.;Liu, K.;Li, S..Microstructures and mechanical properties of quasicrystal reinforced AZ31 matrix composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011:446-451.
[16] ZHANG Jin-shan;ZHANG Yong-qing;ZHANG Yan;XU Chun-xiang;WANG Xiao-ming;YAN Jie.Effect of Mg-based spherical quasicrystal on microstructures and mechanical properties of ZA54 alloy[J].中国有色金属学报(英文版),2010(07):1199-1204.
[17] 朱先勇;于思荣;刘兆政.普通凝固Mg-Zn-Y准晶材料的摩擦磨损特性[J].摩擦学学报,2009(2):152-156.
[18] Yingbo Zhang;Sirong Yu;Yanru Luo;Haixia Hu.Friction and wear behavior of as-cast Mg–Zn–Y quasicrystal materials[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):59-65.
[19] 祁庆琚.含稀土镁合金的摩擦磨损性能[J].中国有色金属学报,2006(07):1219-1226.
[20] 万怡灶.Al2O3/铜合金复合材料的磨损特性研究[J].材料工程,1997(11):6.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%