欢迎登录材料期刊网

材料期刊网

高级检索

采用Tersoff势的分子动力学方法,分析了单壁氮化硼,碳化硅和锗纳米管的导热系数与轴向拉伸特性;进而根据模拟结果,讨论了直径、温度等因素对三种纳米管导热性的影响,以及三种纳米管之间导热性及拉伸性能的差异.研究结果表明:各单壁纳米管的导热系数均随温度的升高以及直径的增大而降低;温度相同时,氮化硼管的导热系数最大,而碳化硅和锗管的导热系数相当;三种纳米管中,锗管的抗变形与抗载荷能力最小,氮化硼管的抗变形能力最大,而氮化硼、碳化硅管的抗载荷能力相当.

Thermal conductivity and axial tensile behaviour of single-wall BN, SiC and Ge nanotubes were simulated by MD(Molecular dynamics) method, and the thermal conductivity and load-strain curves of the nanotubes were given. According to the obtained results, the differences in conductivity and tensile-properties of the nanotubes were investigated. The results showed that the thermal conductivity of all the nanotubes decreases as the temperature and diameter increaing. At the same temperature, the BN nanotubes has the highest thermal conductivity, whereas the Ge and SiC tubes have the comparable one;The Ge tube has both the lowest anti-deformation and anti-loading capability, the BN tube the highest anti-load one, and the BN, SiC tubes the comparable anti-load one.

参考文献

[1] Lijima S H .Microtubes of Graphitie[J].Nature,1991,354(6348):56-58.
[2] Chang C W;Han W Q;Zettl A et al.Thermal Conductivity of B-C-N and BN Nanotubes[J].Applied Physics Letters,2005,86:173102.
[3] Durgun E;Tongay S;Ciraci S .Silicon and Ⅲ-V Compound Nanotubes:Structural and Electronic Properties[J].Physical Review B:Condensed Matter,2005,72(075420):1-10.
[4] Taguchi T;Igawa N;Yamamoto H;Shamoto S;Jitsukawa S .Preparation and characterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes[J].Physica, E. Low-dimensional systems & nanostructures,2005(4):431-438.
[5] 籍凤秋,曹传宝,徐红,杨子光.碳热还原法合成氮化硼纳米管[J].人工晶体学报,2006(02):233-236.
[6] Jia JF;Wu HS;Jiao H .The structure and electronic property of BN nanotube[J].Physica, B. Condensed Matter,2006(1/2):90-95.
[7] 毕可东,陈云飞,杨决宽,陈敏华.不同结构单壁碳纳米管热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006(03):420-422.
[8] 沈海军,姚卫星,史友进.纳米碳管在HyperChem中的自动生成及其力学性能探究[J].计算机与应用化学,2004(03):485-488.
[9] Fletcher R;Reeves C .Function Minimization by Conjugate Gradients[J].Computer Journal,1964,7:149-154.
[10] 陆栋;蒋平.固体物理学[M].上海:上海科学技术出版社,2003:123.
[11] Roland;Passler .Basic Moments of Phonon Density of States Spectra and Characteristic Phonon Temperatures of Group of Ⅳ,Ⅲ-Ⅴ,andⅡ-Ⅵ Marerials[J].Applied Physics,2007,101(093513):1-12.
[12] Tersoff J .Empirical Interatomic Potential for Carbon,With Applications to Amorphous Carbon[J].Physical Review Letters,1988,61(25):2879.
[13] Tersoff J .Modeling Solid-state Chemistry:Interatomic Potentials for Multi-Component Systems[J].Physical Review B:Condensed Matter,1989,39(08):5566-5568.
[14] Nord J.;Albe K.;Erhart P.;Nordlund K. .Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride[J].Journal of Physics. Condensed Matter,2003(32):5649-5662.
[15] Karsten Albe;Wolfhard Moller .Modelling of boron nitride: Atomic scale simulations on thin film growth[J].Computational Materials Science,1998(1/4):111-115.
[16] Kaburaki H;Li J;Sidney Y.Thermal Conductivity of Solid Argon by Classical Molecular Dynamics[A].,1991:503-508.
[17] Lrving J H;Kirkwood J G .The Statistical Mechanical Theory of Transport Processes IV The Equations of Hydrodynamics[J].Journal of Chemical Physics,1950,18:817-829.
[18] Miyamoto Y;Rubio A .Spectroscopic Characterization of Stone-Wales Defects in Nanotubes[J].Physical Review B:Condensed Matter,2004,69:121413.
[19] Zhang PH.;Crespi VH.;Lammert PE. .Plastic deformations of carbon nanotubes[J].Physical review letters,1998(24):5346-5349.
[20] Chopra NG.;Zettl A. .Measurement of the elastic modulus of a multi-wall boron nitride nanotube[J].Solid State Communications,1998(5):297-300.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%