稀有金属材料与工程, 2013, 42(10): 2053-2056.
超细晶纯钛材电化学抛光表面生物相容性研究
许晓静 1, , 盛新兰 2, , 硅基含氮荧光材料的研究进展作了介绍.","authors":[{"authorName":"肖志国","id":"e0000162-3c71-44a2-a183-7e482396f690","originalAuthorName":"肖志国"}],"doi":"","fpage":"57","id":"d58763ac-9b96-4bf3-87d2-4acba2d6a784","issue":"7","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"84dcd532-5caf-4f8b-a290-c4ee7dddd98a","keyword":"蓝光芯片","originalKeyword":"蓝光芯片"},{"id":"2fe6e8e9-17fc-406d-868b-0c8e76eedd64","keyword":"钇铝石榴石YAG:Ce","originalKeyword":"钇铝石榴石YAG:Ce"},{"id":"992824ff-a480-453a-985a-56c388360719","keyword":"硅酸盐","originalKeyword":"硅酸盐"},{"id":"e2f03aa3-ad0f-448a-ae75-e0682bbb7b05","keyword":"硅基氮化物","originalKeyword":"硅基氮化物"},{"id":"7d434e5d-307e-4e12-8f7e-49b79bd6d672","keyword":"氮氧化物","originalKeyword":"氮氧化物"}],"language":"zh","publisherId":"zgcljz200907008","title":"半导体照明中光色转换用发光材料的研究进展","volume":"28","year":"2009"},{"abstractinfo":"氮化物陶瓷是应用广泛的特种陶瓷,但传统的氮化物陶瓷烧结方法极为消耗能源、生产周期长、成本高.为降低成本、能耗,采用燃烧合成工艺制备氮化物陶瓷基复合材料,包括氮化钛和六方氮化硼,燃烧合成工艺利用单质元素与氮气反应合成氮化物.研究结果表明:压坯与80MPa N2反应燃烧合成TiN制件致密度约75%,压坯为添加了TiN稀释剂和适量氧化铝的钛粉,压坯孔隙率45%;燃烧合成纯BN制件致密度为68%,BN基制件致密度为78%,压坯为添加了h-BN稀释剂或SiO2添加剂的B粉压坯与80MPa N2反应合成,压坯孔隙率48%;在材料体系中,稀释剂起减小晶粒尺寸和降低燃烧温度的作用,而Al2O3和SiO2添加剂则起提高强度和相对密度的作用.","authors":[{"authorName":"张宇民","id":"83f8ca66-f2f7-45b8-ac38-2510f9101cd1","originalAuthorName":"张宇民"},{"authorName":"韩杰才","id":"c2d8c8ba-ccb9-4671-9d8e-b3fd1af059f1","originalAuthorName":"韩杰才"},{"authorName":"赫晓东","id":"52496caa-ea8a-41b4-98de-4202821a81b9","originalAuthorName":"赫晓东"}],"doi":"10.3969/j.issn.1005-0299.2002.04.006","fpage":"362","id":"3c97545b-57a6-4c53-a2f4-183a5ee6e716","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"baaf7c52-01f3-445e-a33d-a41ae5481c6b","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"beac74ef-7a64-4e13-a379-07ee5ad69681","keyword":"氮化物","originalKeyword":"氮化物"},{"id":"9c61af50-547a-4cde-9868-f8b4aebc002d","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"adf1ee6e-b35e-4f04-b37b-1a09a1d89961","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"clkxygy200204006","title":"燃烧合成氮化物陶瓷基复合材料","volume":"10","year":"2002"},{"abstractinfo":"利用先驱体聚合物浸渍-裂解(PIP)技术制备SiBN纤维增强氮化物陶瓷基复合材料,对SiBN纤维、聚硅硼氮烷有机先驱体裂解以及SiBN纤维增强氮化物陶瓷基复合材料性能进行了分析.研究表明:聚硅硼氮烷先驱体在氨气气氛下裂解得到的陶瓷产物碳含量较低,其裂解产物介电常数在3.0左右,介电损耗小于0.01;SiBN纤维中C和O元素含量均较高,碳的存在对材料介电性能影响明显;制备的氮化物陶瓷基复合材料弯曲强度为88.52 MPa,弹性模量为20.03 GPa.","authors":[{"authorName":"余娟丽","id":"00361ca7-e7d6-4ac4-bd4e-f29c2c9f6109","originalAuthorName":"余娟丽"},{"authorName":"王涛","id":"fdf82333-026f-45be-8be6-12973f8e1290","originalAuthorName":"王涛"},{"authorName":"吕毅","id":"b1ca4111-9fec-4d67-8bb6-9baa3f22a6af","originalAuthorName":"吕毅"},{"authorName":"赵英民","id":"5ee933ba-a7d7-42e8-b124-a5af40b918b9","originalAuthorName":"赵英民"},{"authorName":"裴雨辰","id":"8f479894-6f09-4732-9894-30e192139732","originalAuthorName":"裴雨辰"}],"doi":"10.3969/j.issn.1007-2330.2015.03.005","fpage":"19","id":"623b5676-c845-4e0a-95c1-603eafc6f95a","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"313d0864-204a-469b-bb38-19bd3323837e","keyword":"SiBN纤维","originalKeyword":"SiBN纤维"},{"id":"1bc75fe0-bfb1-4945-aac8-4a77992d21d3","keyword":"透波材料","originalKeyword":"透波材料"},{"id":"2e04851b-becf-4f39-aca5-17bad30bebd6","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"3e0f0c61-2f50-49cd-a1e5-e7432941ed2f","keyword":"先驱体","originalKeyword":"先驱体"},{"id":"fba419b3-ed4b-4623-86bd-afc7787c4b59","keyword":"浸渍—裂解","originalKeyword":"浸渍—裂解"}],"language":"zh","publisherId":"yhclgy201503005","title":"PIP法制备SiBN纤维增强氮化物陶瓷基复合材料Ⅰ——纤维和先驱体性能分析","volume":"45","year":"2015"},{"abstractinfo":"采用先驱体聚合物浸渍裂解法(Preceramic polymer impregnation pyrolysis,PIP)制备了短切石英纤维增强氮化物基透波复合材料(SiO2f/Si3N4-BN),对复合材料的显微结构和界面特性进行了研究,探讨了短纤维增强氮化物基复合材料的强韧化机理.力学性能测试表明复合材料弯曲强度、断裂韧性和断裂应变分别达到56.6 MPa,2.3 MPa·m1/2和0.462%,介电性能优良.扫描电镜(SEM)及选区能谱(EDS)分析结果表明,氮化物基体与短切石英纤维没有发生界面反应,界面结合适中,短纤维以纤维拔出及裂纹偏转的形式使基体增强和增韧.","authors":[{"authorName":"姜勇刚","id":"7600ce55-f35b-4ebd-9d05-efd62caf12c9","originalAuthorName":"姜勇刚"},{"authorName":"张长瑞","id":"e458f19b-de65-4a14-9aa5-5d52bffa4faf","originalAuthorName":"张长瑞"},{"authorName":"曹峰","id":"d6740635-e8e2-4796-816a-9f31b9c9158a","originalAuthorName":"曹峰"},{"authorName":"王思青","id":"4090258c-436d-41f4-8de3-226aca8f83c8","originalAuthorName":"王思青"},{"authorName":"齐共金","id":"563fe4f7-da59-4729-b93a-8531107099fb","originalAuthorName":"齐共金"}],"doi":"","fpage":"696","id":"ba258a59-635a-4dda-926f-84105687bc74","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"a8388b24-325c-4503-b587-600a7f80e748","keyword":"短切石英纤维","originalKeyword":"短切石英纤维"},{"id":"2fcadab9-32b1-4021-8080-bfddeaa93603","keyword":"氮化物基复合材料","originalKeyword":"氮化物基复合材料"},{"id":"bad7efd2-a419-4370-bda6-8bf7ca575d80","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"9f21b55b-0889-46a0-a6b7-27b83ece307d","keyword":"强韧化机理","originalKeyword":"强韧化机理"}],"language":"zh","publisherId":"xyjsclygc2007z1197","title":"短切石英纤维增强氮化物基复合材料的微观结构及强韧化机理","volume":"36","year":"2007"},{"abstractinfo":"多层结构可以提高材料的强度、弹性模量和韧性。当尺寸减小到纳米量级时,性能将产生飞跃变化。首先探讨了多层结构提高强度、弹性模量和韧性等性能的基本原理,然后阐明了纳米尺度效应及理论,重点以过渡族金属氮化物ZrN纳米多层膜为例,研究了氮化物/金属(ZrN/Cu)纳米多层膜、ZrAIN纳米复合膜以及ZrAIN/Cu纳米多层膜的强韧化性能。结果表明,ZrN/Cu纳米多层膜的断裂韧性约是二元ZrN薄膜的2倍。当纳米多层膜的Cu单层厚度为2013131时,多层膜的K1C值最高。ZrAIN复合膜的断裂韧性与Al含量密切相关,当Al原子分数为23%时,薄膜的KIc值达3.17MPa·m^1/2,其硬度〉40Gpa,Al原子分数为47%的薄膜的K1C值则降低到1.13MPa·m…。,其硬度降低至17.1GPa。与z州/cu纳米多层膜和ZrAlN复合膜相比,以ZrAIN层和cu层为调制结构制备的ZrAlN/Cu纳米多层膜具有最高的硬度和最好的韧性。","authors":[{"authorName":"张平","id":"04ad1b07-7880-47e5-b842-da1b1b708920","originalAuthorName":"张平"},{"authorName":"杜军","id":"2d4bdf09-8230-4189-969d-b3ed59cf1c3a","originalAuthorName":"杜军"}],"doi":"","fpage":"30","id":"b2ea381e-ebe5-4960-8a2d-2cbb1bf6f56d","issue":"10","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"ef138826-05b6-48d0-a319-ddb741679dc3","keyword":"纳米多层膜","originalKeyword":"纳米多层膜"},{"id":"96e2bf5d-d883-444e-bb59-1476ee670601","keyword":"氮化物","originalKeyword":"氮化物"},{"id":"6bd7e292-5e52-4d7b-bf12-d2a83090394c","keyword":"金属Cu","originalKeyword":"金属Cu"},{"id":"db7951be-d322-420d-a0c0-d57d6b3f7e08","keyword":"强韧化","originalKeyword":"强韧化"}],"language":"zh","publisherId":"zgcljz201110006","title":"Zr基氮化物/金属Cu纳米多层膜的强韧化研究","volume":"30","year":"2011"},{"abstractinfo":"选用TiN,TiAlN,CrN和CrAlN 4种涂层材料,使用电阻炉对试样加热并保温,进行抗氧化性能实验,利用SEM、EDS和XRD获得了氧化结果。结果表明:Ti基涂层的氧化机制以O原子向涂层内部扩散为主;Cr基涂层的抗氧化机制为N原子和Cr离子向涂层表面的扩散所形成的微孔诱发的氧化;Cr基涂层比Ti基涂层具有较好的抗氧化性;Al的加入使得TiAlN与CrAlN涂层的氧化性能和高温后硬度提高,特别是CrAlN氧化后生成的致密Cr2O3和Al2O3混合氧化物使其抗氧化性能达到最优;氧化及涂层与基体的热涨失配使得几类涂层最终开裂失效;四种涂层的抗氧化能力为CrAlN〉TiAlN〉CrN〉TiN。","authors":[{"authorName":"刘爱华","id":"0a64df97-21c1-4eb8-b7f7-151fdc9455f5","originalAuthorName":"刘爱华"},{"authorName":"邓建新","id":"33334240-c522-4fd3-996f-74dc3e712cc6","originalAuthorName":"邓建新"},{"authorName":"崔海冰","id":"ec9d0ade-4100-43a0-99d5-94babf43cad0","originalAuthorName":"崔海冰"},{"authorName":"李士鹏","id":"8eb3a88a-4799-4815-9086-8a10149082a6","originalAuthorName":"李士鹏"},{"authorName":"赵军","id":"156528f4-40df-4a4c-825c-d2f28aa656b0","originalAuthorName":"赵军"}],"doi":"","fpage":"147","id":"439b4f7f-d9a0-481e-aae2-07723a82da01","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"0d1055cc-26c8-47e7-a9be-9955372ef9fc","keyword":"Ti基","originalKeyword":"Ti基"},{"id":"48a10f74-9774-4db8-a870-fd4ac395e961","keyword":"Cr基","originalKeyword":"Cr基"},{"id":"5f3c0077-830c-45ef-b8e5-cb5dbce1b5c2","keyword":"氮化物涂层","originalKeyword":"氮化物涂层"},{"id":"f0e66603-808d-4bdf-98cd-9f8ce6b8264e","keyword":"抗氧化性能","originalKeyword":"抗氧化性能"},{"id":"054ff50d-ee9b-44e9-9364-bf2e55c2196b","keyword":"热涨失配","originalKeyword":"热涨失配"}],"language":"zh","publisherId":"jsrclxb201206026","title":"Ti基与Cr基氮化物涂层的抗氧化性能","volume":"33","year":"2012"},{"abstractinfo":"提出了在高温和静态氮气氛下利用金属与氮气直接反应制取金属氮化物的合成方法.通过选择不同的反应条件,用该方法合成了从活泼金属(如Li、Mg、La、Ce和Al)到过渡金属(如Ti、Zr、V、Nb和Cr)等10种二元氮化物.时所得氮化物进行XRD物相分析表明,所得产物均以二元氮化物为主相,杂相含量很少.用扫描电镜(SEM)观察了AIN、TiN和VN样品的表面形貌,EDX分析表明,它们的化学组成与名义成分基本一致.与其它氮化物合成方法相比,静态氮气中直接氮化的合成方法具有节省资源和环境友好的优点.","authors":[{"authorName":"曹文焕","id":"404dd8c4-3d91-4d96-80d8-2035dc86cd47","originalAuthorName":"曹文焕"},{"authorName":"董成","id":"2aeceb8d-2a07-4d1e-b553-5bb7a3486abd","originalAuthorName":"董成"},{"authorName":"曾令民","id":"28ff88cf-1f61-47b6-9ee1-68e8fdbeae56","originalAuthorName":"曾令民"},{"authorName":"贺兵","id":"ca32b99f-a809-4e70-9700-2e93191b9dc7","originalAuthorName":"贺兵"},{"authorName":"杨立红","id":"a90445be-903d-40c4-8ae9-500185d9bde4","originalAuthorName":"杨立红"},{"authorName":"刘弘睿","id":"1db605b0-3758-43f0-b33f-27406993a10c","originalAuthorName":"刘弘睿"},{"authorName":"陈红","id":"62311331-1021-4df8-8c98-b93e50a5ea3f","originalAuthorName":"陈红"}],"doi":"","fpage":"86","id":"ce9390db-c610-4b42-bdf4-863311516a8b","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8aada719-b513-458d-bab9-d476f6ffb2f4","keyword":"直接氮化","originalKeyword":"直接氮化"},{"id":"4b1b04e9-610d-469a-84d6-2c38024fc4e7","keyword":"合成","originalKeyword":"合成"},{"id":"2eccfc0e-c41d-4cfa-8b4f-4ded9348a5c5","keyword":"金属氮化物","originalKeyword":"金属氮化物"}],"language":"zh","publisherId":"cldb200906027","title":"静态氮气氛中合成金属氮化物","volume":"23","year":"2009"},{"abstractinfo":"合成了全氢聚硅氮烷和硼氮烷的混杂先驱体并对其结构进行了表征;以混杂先驱体和3D碳纤维编制体为原料,采用先驱体浸渍-裂解(PIP)工艺制得了碳纤维增强氮化硼-氮化硅混杂基体的复合材料,并对复合材料的力学性能和抗烧蚀性能进行了研究.结果表明,混杂先驱体中含有B-N,B-H,Si-N,Si-H,N-H等结构,无其它杂质出现;随着PIP工艺循环次数的增加,复合材料的密度随之提高;当进行4个循环时基本致密,密度达到1.50g/cm3,弯曲强度达到156.4 MPa;轨道模拟实验显示复合材料具有优异的抗烧蚀性能.","authors":[{"authorName":"李斌","id":"ec34c060-f374-4507-b5ef-66e439642df6","originalAuthorName":"李斌"},{"authorName":"张长瑞","id":"57faea59-a678-47c4-8d41-8a7875aa916b","originalAuthorName":"张长瑞"},{"authorName":"曹峰","id":"e700b13a-c776-44d7-9f30-7bf925026b1c","originalAuthorName":"曹峰"},{"authorName":"王思青","id":"1af61917-266b-4b5a-9206-202b4c0e02df","originalAuthorName":"王思青"},{"authorName":"曹英斌","id":"69638eba-3cdc-4bd5-8929-f7c7fe87ee7b","originalAuthorName":"曹英斌"},{"authorName":"姜勇刚","id":"2dcf5a91-a477-4ab6-b9ad-ffb57916c9a9","originalAuthorName":"姜勇刚"},{"authorName":"周长城","id":"00256b4f-1a23-4de5-a53c-2b1c10b21032","originalAuthorName":"周长城"}],"doi":"","fpage":"762","id":"22f54afa-b3c1-4832-854e-54074823d51a","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"911cb5e9-37d0-47b9-aba0-027d933f45f3","keyword":"先驱体浸渍-裂解","originalKeyword":"先驱体浸渍-裂解"},{"id":"f20ace34-a9d6-4b44-950a-ea0e648da01c","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1a0fea88-db2f-41e9-bc7d-d80c4dcde260","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"8534ffae-57ce-4814-9059-ade64538a0a8","keyword":"烧蚀","originalKeyword":"烧蚀"}],"language":"zh","publisherId":"xyjsclygc2007z1215","title":"碳纤维增强氮化物基复合材料的制备及其性能表征","volume":"36","year":"2007"},{"abstractinfo":"以环硼氮烷和伞氧聚硅氮烷组成的混杂先驱体为原料,采用先驱体浸渍-裂解工艺制备了空心石英纤维增强氮化硼-氮化硅混杂基体的复合材料,研究了裂解温度对复合材料的致密化、力学性能、介电性能和断口显微形貌的影响.结果表明,当裂解温度从300℃提高到500℃时,复合材料的密度逐渐增大,材料的弹性模量随之提高,而其弯曲强度先增后减.当裂解温度为400℃时,复合材料表现出最高抗弯强度(132.4MPa),这源于较小的纤维损伤以及基体和纤维之间良好的界面结合状态.随着裂解温度的提高,复合材料的介电常数也逐渐增大,但三种温度下制备的复合材料均具有较低的介电常数(2.60~3.01)和较低的损耗角正切值(小于5×10-3),材料良好的介电性能源于介电性能优异的高纯度空心石英纤维增强相和较低密度的尤碳氮化物基体.","authors":[{"authorName":"邹晓蓉","id":"f8f70ed5-6e2d-4033-a449-ac29a6aefee5","originalAuthorName":"邹晓蓉"},{"authorName":"张长瑞","id":"825ae775-62ad-4926-9d9a-57ff6e667a5d","originalAuthorName":"张长瑞"},{"authorName":"王思青","id":"eadd4e2f-a6f8-4e41-9abd-b09253f756d1","originalAuthorName":"王思青"},{"authorName":"曹峰","id":"f26e4922-6581-42f0-bb45-b8540d58947d","originalAuthorName":"曹峰"},{"authorName":"李斌","id":"629d6040-83d2-4bf6-8c8b-a7d9a24407ee","originalAuthorName":"李斌"},{"authorName":"宋阳曦","id":"37758b9e-acdb-4c61-8dc7-5cd03b10b762","originalAuthorName":"宋阳曦"}],"doi":"10.3969/j.issn.1005-5053.2010.3.009","fpage":"38","id":"116893ac-3e4c-4293-97ff-3ddc236b031c","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"9d676ea2-5f5b-4fa9-8dd7-5cf34a54c376","keyword":"空心石英纤维","originalKeyword":"空心石英纤维"},{"id":"4e4377b4-1f83-4a8a-a0c1-a3d408f61cbf","keyword":"先驱体浸渍-裂解","originalKeyword":"先驱体浸渍-裂解"},{"id":"aabd06b3-5b15-451f-8ea0-c3c0c9fb6b69","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1a26535d-ebd4-4ae3-85e9-8e5c364ca66c","keyword":"裂解温度","originalKeyword":"裂解温度"},{"id":"c58dc19f-c65d-41bd-b28b-d5b852f2e7ce","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"9f5191f7-6628-4ff6-b6c2-a3a9a5492396","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"hkclxb201003009","title":"空心石英纤维增强氮化物基低介电复合材料的制备及其性能","volume":"30","year":"2010"},{"abstractinfo":"硬度是一个复杂的物理量,用第一性原理难以描述,我们基于固体硬度等于单位面积上所有键对压头的抵抗力之和的观点,从化学键理论出发定义了物质的硬度.本文利用复杂晶体的化学键理论计算了立方氮化物高压相的化学键参数,结果表明这些氮化物具有高的共价成键特性.利用硬度的化学键理论预测了立方氮化物高压相的硬度,通过与实验值的比较说明了结果的合理性.","authors":[{"authorName":"高发明","id":"b8fdf72c-996e-4fad-a59c-9da0bd93c86a","originalAuthorName":"高发明"}],"doi":"10.3969/j.issn.1000-985X.2005.04.022","fpage":"666","id":"ede65600-f0c8-423a-80e4-c66c21cfa690","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"a270bd89-77aa-4442-916c-03677276a4f0","keyword":"氮化物","originalKeyword":"氮化物"},{"id":"e31d6ccb-fee1-4acf-8082-835a8d66fe6f","keyword":"硬度","originalKeyword":"硬度"},{"id":"cfdc34ee-a197-48ff-80e3-f01226be58e4","keyword":"化学键","originalKeyword":"化学键"}],"language":"zh","publisherId":"rgjtxb98200504022","title":"高压相立方氮化物的硬度预测","volume":"34","year":"2005"}],"totalpage":5830,"totalrecord":58292}