采用湿化学法制备W-TiC复合粉体,然后采用放电等离子体烧结(SPS)技术制备超细晶W-TiC复合材料,并对其复合粉体形貌和烧结复合材料组织结构进行研究。结果表明,对原始TiC粉进行活化预处理,使TiC粉表面获得均匀分布的缺陷,提高TiC粉表面的的亲水性,通过化学还原获得第二相TiC颗粒,且均匀弥散分布于W基体晶界和晶粒内。采用SPS烧结技术获得的超细晶W-TiC复合材料晶粒尺寸为400 nm,致密度为95%,维氏显微硬度值HV 0.2达到1280。
W-TiC composite powders were prepared by wet-chemical process, and ultra-fine grained W-TiC composites were fabricated by spark plasma sintering (SPS). The surface morphologies of W-TiC composite powders and the microstructure of W-TiC composites were studied. The results show that TiC powders are subjected to chemical activation pretreatment to obtain uniform distribution of defects on the surface of TiC powder, thus increasing the hydrophilicity of the TiC surface. The second phase TiC particles are homogeneously and dispersively distribute in the grains and grain boundaries by chemical reduction. The grain size, relative density and the Vicker hardness HV0.2 of the ultra-fine grained W-TiC composites by SPS are 400 nm, 95% and 1280, respectively{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"首先,将不同浓度(0.426~0.855 mol·L-1)的硫酸铝溶液在不断搅拌状态下缓慢滴入含有聚乙二醇的氨水-氯化铵缓冲液(pH值约为9.5)中制得Al(OH)3溶胶,经抽滤,洗涤,在蒸馏水中超声分散后,采用透射电镜观察胶粒的形状,以研究硫酸铝溶液浓度对Al(OH)3溶胶胶粒形貌的影响.结果表明:硫酸铝溶液浓度对Al(OH)3溶胶胶粒形貌影响很大;当硫酸铝溶液的浓度为0.65 mol·L-1时,得到的胶粒呈球形.然后,将制得的胶粒呈球形的Al(OH)3溶胶抽滤后用无水乙醇浸泡24 h,过滤,于120℃干燥1.5 h,在1 150℃煅烧1 h制成纳米α-Al2O3粉,并用XRD、TEM等对其相组成、形状、分散性和流动填充性等进行了表征.结果表明:以球形的Al(OH)3胶粒为前驱体制成的纳米α-Al2O3粉也呈球形;干凝胶于1 150℃煅烧1 h后完全转变为α-Al2O3;纳米α-Al2O3粉体中的团聚体大部分是软团聚,故其流动填充性能也很好.","authors":[{"authorName":"李晶","id":"9c5b036e-e66d-4491-87ee-5f1bb1534383","originalAuthorName":"李晶"},{"authorName":"蒋明学","id":"65c64f39-a68b-4306-8265-01176c330f1f","originalAuthorName":"蒋明学"}],"doi":"10.3969/j.issn.1001-1935.2007.01.006","fpage":"30","id":"65b8bb9f-cf17-43e0-821e-e66e5cde47f8","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"8eabbdbe-8e9d-4a8c-950f-77bb4c76ec1d","keyword":"球形纳米α-Al2O3","originalKeyword":"球形纳米α-Al2O3"},{"id":"0636501e-aa15-4017-a3db-0d7413c280c0","keyword":"前驱体","originalKeyword":"前驱体"},{"id":"d8308fdc-1eaf-4fbd-b109-b0fe352546e2","keyword":"流动填充性能","originalKeyword":"流动填充性能"},{"id":"f5f1cfc1-e9dd-420c-9b6a-6162828ea37d","keyword":"颗粒形状","originalKeyword":"颗粒形状"}],"language":"zh","publisherId":"nhcl200701006","title":"球形纳米α-Al2O3粉体的制备及其表征","volume":"41","year":"2007"},{"abstractinfo":"以硫酸铝、氯化铝和尿素作为原料,在90℃条件下利用化学沉淀法制备了α-Al2 O3粉末,探讨了活性剂PEG和NaCl的含量对颗粒形貌、尺寸和团聚情况的影响.利用XRD、SEM和TG/DSC对样品进行表征,结果表明:聚乙二醇(PEG)可以提高粉体的分散性,由TG曲线可知前躯体为无定形的AlOOH·0.25H2O,PEG的吸附效率为13.2%.前躯体在600℃和800℃煅烧2h得到无形定的Al2 O3和γ-Al2 O3,1000℃即转变为α-Al2O3并伴随Na2 SO4的特征峰,1200℃完全转变为α-Al2 O3.加入一定量的NaCl能防止α-Al2O3粉末在1000℃高温煅烧时的团聚,[ NaCl] =0.05 mol/L时能获得0.5 μm的分散较好的球形α-Al2 O3颗粒;当[NaCl] =0.1 mol/L时能获得大量纳米尺寸的球形α-Al2 O3颗粒;当[NaCl] ≥0.15 mol/L时,α-Al2 O3颗粒团聚严重.","authors":[{"authorName":"巢昺轩","id":"05e362bf-5c51-402d-95a5-6d855eba13b4","originalAuthorName":"巢昺轩"},{"authorName":"孔见","id":"ae4e0215-5c7d-4e94-abb2-c70ab129688b","originalAuthorName":"孔见"},{"authorName":"王腾","id":"1c0817f2-6841-4d34-906b-53cf1c542f44","originalAuthorName":"王腾"}],"doi":"","fpage":"166","id":"9aacc1c8-de6e-4d7b-bce7-e5cc6cbc0f20","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4902c9aa-32b6-48e7-a32d-3a5679520876","keyword":"水溶液沉淀法","originalKeyword":"水溶液沉淀法"},{"id":"7d4cf3c7-7b97-426e-8a1d-658bf813b719","keyword":"球形氧化铝","originalKeyword":"球形氧化铝"},{"id":"4fa57845-3d78-4580-80fb-d1f15b15c71f","keyword":"团聚","originalKeyword":"团聚"},{"id":"ffe43931-90b7-4f5d-af81-98f66f8c6e74","keyword":"前躯体","originalKeyword":"前躯体"}],"language":"zh","publisherId":"gsytb201201036","title":"水溶液沉淀法制备超细球形α-Al2O3","volume":"31","year":"2012"},{"abstractinfo":"以Na2SiO3·9H2O、浓H2SO4等为原料,采用溶胶凝胶—喷雾干燥法制备球形二氧化硅,并采用非均匀成核的方式对其进行表面包覆氧化铝的处理,进而研究在不同温度煅烧下包覆样品的形貌、组织成分、粒度及分散性的改变.通过X射线衍射仪,扫描电子显微镜,激光粒度分析仪,能谱仪等对包覆前后以及不同温度烧结后的样品进行表征.结果表明:采用非均匀成核法,Al2O3以无定形结构成功的包覆在球形SiO2粉体表面.样品在1100℃发生莫来石转变,并在1400℃非晶SiO2转变为方石英,同时莫来石转变完全.","authors":[{"authorName":"祖立成","id":"bf6658f6-1517-4166-a62e-8401fc01f647","originalAuthorName":"祖立成"},{"authorName":"郑治祥","id":"c0845f71-ea16-480f-b3f7-5e5615126b16","originalAuthorName":"郑治祥"},{"authorName":"王苏敏","id":"4fb11bc5-4773-41f4-8d09-a852e49890d8","originalAuthorName":"王苏敏"},{"authorName":"刘海涛","id":"96de7135-d0ed-4c2b-9b72-28942377b035","originalAuthorName":"刘海涛"},{"authorName":"徐光青","id":"ea94e4d9-bf73-464e-a4c7-d6716f75ac1d","originalAuthorName":"徐光青"},{"authorName":"吕珺","id":"4ca3b0f0-b6fc-4971-b773-336a2db77dbb","originalAuthorName":"吕珺"}],"doi":"","fpage":"1580","id":"f33e7411-4482-478a-b105-6bc0a32c67bc","issue":"8","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d970a208-6579-4887-8cf1-30325a44b505","keyword":"二氧化硅","originalKeyword":"二氧化硅"},{"id":"345eebc4-04ba-45ec-a845-be6ba8862a56","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"cfb7b94d-b614-4cb7-b251-93325def3365","keyword":"表面包覆","originalKeyword":"表面包覆"},{"id":"db41ab8d-7e98-4e5b-bee6-39ad47fcbc73","keyword":"复合粉体","originalKeyword":"复合粉体"}],"language":"zh","publisherId":"gsytb201308023","title":"Al2O3包覆SiO2球形复合粉体的制备及烧结","volume":"32","year":"2013"},{"abstractinfo":"采用共沉淀法制备Al2O3/3Y-TZP纳米粉体,粉体压制后通过微波和常规烧结制备Al2O3/3Y-TZP陶瓷,并研究两种烧结方法对Al2O3/3Y-TZP陶瓷相对密度、抗弯强度、断裂韧性和断口形貌等的影响.结果表明,共沉淀法制得的Al2O3/3Y-TZP纳米粉体晶粒细小、均匀,近似球形,尺寸为40~60 nm;随烧结温度的升高,两种烧结方法制备的陶瓷试样相对密度、抗弯强度和断裂韧性均先升高后降低;与常规烧结相比,Al2O3/3Y-TZP陶瓷的微波烧结温度明显降低,时间显著缩短,且晶粒更细小,相对密度、抗弯强度和断裂韧性显著提高.","authors":[{"authorName":"罗军明","id":"7ec58ed7-2fa5-4573-80f1-2502c2e9e03e","originalAuthorName":"罗军明"},{"authorName":"徐吉林","id":"4825bb47-2684-4f90-8dff-bec0c8014ba1","originalAuthorName":"徐吉林"},{"authorName":"左红艳","id":"630f549a-b634-4d06-9b1d-6742ec90a56e","originalAuthorName":"左红艳"}],"doi":"","fpage":"6","id":"22d32030-6938-475c-bc28-d18c0ea1123e","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f0d0258e-89a6-43e7-b13f-0feb28350def","keyword":"共沉淀法","originalKeyword":"共沉淀法"},{"id":"7697b102-bb26-4c33-949b-8c1cdccb71ef","keyword":"微波烧结","originalKeyword":"微波烧结"},{"id":"7b13cd46-315e-44e5-a686-4a58dfbaba40","keyword":"常规烧结","originalKeyword":"常规烧结"},{"id":"bde29c6c-1713-4677-81fc-294014ae50a8","keyword":"Al2O3/3Y-TZP陶瓷","originalKeyword":"Al2O3/3Y-TZP陶瓷"}],"language":"zh","publisherId":"cldb201410002","title":"微波和常规烧结制备纳米Al2O3/3Y-TZP陶瓷","volume":"28","year":"2014"},{"abstractinfo":"以纳米Al2O3、CuSO4·5H2O和纳米铝粉为原料,采用非匀相沉淀工艺获得了纳米铜包裹α-Al2O3复合粉体;研究了反应温度和pH值对复合粉体成分及性能的影响;利用XRD、XPS、TG/DSC、Zeta电位和TEM等方法对复合粉体的成分、热学特性以及形貌特征进行了表征.结果表明:采用反应温度为40℃、保温4 h的工艺条件,可以获得纳米铜颗粒包裹Al2O3纳米复合粉体,铜颗粒呈球形,尺寸为10 nm左右.","authors":[{"authorName":"卢红霞","id":"a6e01caa-96bd-4cb6-a096-fc54358b9318","originalAuthorName":"卢红霞"},{"authorName":"胡行","id":"aa6f000a-208c-4d64-8ebf-360ed7e9987a","originalAuthorName":"胡行"},{"authorName":"张锐","id":"c6a45d47-6bc1-4214-8551-e1d3c82e05be","originalAuthorName":"张锐"},{"authorName":"许红亮","id":"0d3f0b53-1495-47db-9c9f-c00b8db788aa","originalAuthorName":"许红亮"},{"authorName":"王海龙","id":"e7d6fe99-393a-4b6b-ba89-f67febf25e15","originalAuthorName":"王海龙"}],"doi":"10.3969/j.issn.1000-3738.2006.08.021","fpage":"69","id":"367829b4-5257-414c-bce5-75f18b2d58dd","issue":"8","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"c4997439-3fac-48b4-a95d-11978268760f","keyword":"沉淀包裹","originalKeyword":"沉淀包裹"},{"id":"6357c207-ca2c-4d53-b7dd-9e6ad8fa07ea","keyword":"纳米","originalKeyword":"纳米"},{"id":"65282af6-d73b-4269-8de5-dec39a7d0857","keyword":"Al2O3","originalKeyword":"Al2O3"},{"id":"85aebb30-8d05-4dce-b1d5-eab2fa0fb147","keyword":"复合粉体","originalKeyword":"复合粉体"}],"language":"zh","publisherId":"jxgccl200608021","title":"沉淀包裹法制备Cu/α-Al2O3纳米复合粉体","volume":"30","year":"2006"},{"abstractinfo":"以电熔致密刚玉,碳化硅、沥青等为主要原料,研究了加入纳米Al2O3对Alpha-bond结合的Al2O3-SiC-C 质铁沟浇注料性能的影响.随着细粉预混法引入的纳米Al2O3的增加,流动值相近时,浇注料加水量有所增加,常温抗折强度和耐压强度变化趋势不明显;高温抗折强度在纳米Al2O3加入量为0.5%(质量分数,下同)时最高,提高幅度为4%,但随着加入量的继续增加,呈降低趋势.静态坩埚抗渣实验表明:含纳米Al2O3的浇注料,其抗渣侵蚀性没有得到改善:在加入1.0%纳米Al2O3时,抗渣渗透性得到提高.引入的纳米Al2O3使得材料在高温处理后更易生成莫来石相.","authors":[{"authorName":"王战民","id":"8d3b4829-794c-4787-aa4d-59ca20db0a26","originalAuthorName":"王战民"},{"authorName":"姜东梅","id":"b316042a-d0e9-4fbc-bccd-b087b87c6fc2","originalAuthorName":"姜东梅"},{"authorName":"曹喜营","id":"ce90fcbd-4c40-4b7f-b33e-a8003018b03e","originalAuthorName":"曹喜营"},{"authorName":"李红霞","id":"47bfc1df-73dd-48d5-a844-05bdfd65528f","originalAuthorName":"李红霞"}],"doi":"","fpage":"560","id":"06aca047-9b15-48e0-93d8-f5daf93f4bbb","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"abb99cfc-be8c-4ecc-a7c9-1f6861da38c1","keyword":"纳米Al2O3","originalKeyword":"纳米Al2O3"},{"id":"98436bc5-1ae1-4944-b5cb-f1ebf74f5e82","keyword":"Al2O3-SiC-C","originalKeyword":"Al2O3-SiC-C"},{"id":"e1daa965-30d8-429f-b7af-a2a732ca8a57","keyword":"浇注料","originalKeyword":"浇注料"},{"id":"4ac08be5-4ee4-443f-8fef-46fa2e8647f8","keyword":"抗渣性","originalKeyword":"抗渣性"},{"id":"1cee4a91-f305-43f4-8b89-8bf16f1b54e3","keyword":"Alpha-bond","originalKeyword":"Alpha-bond"}],"language":"zh","publisherId":"xyjsclygc2008z1147","title":"纳米Al2O3对Al2O3-SiC-C浇注料性能的影响","volume":"37","year":"2008"},{"abstractinfo":"在由机械研磨2 h的 Al 粉经超声波作用下发生水解反应、干燥、焙烧后制备 Al2 O3的过程中,用蔗糖、研磨13 h 的 Zn 粉和 Ag+分别作为辅助剂制得具有高比表面积的γ-Al2 O3,并考察改性后对γ-Al2 O3织构的影响。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(SEM)和比表面测定(BET)等技术对介孔纳米γ-Al2 O3样品进行表征。结果表明,γ-Al2 O3不但具有高的比表面积,而且孔径分布较为集中。通过改变蔗糖的用量、Zn 粉纳米颗粒和 Ag+,在一定程度上对γ-Al2 O3的比表面积和孔结构等进行调控。","authors":[{"authorName":"陈蒙","id":"e5ac80e9-615c-4021-b01a-e3f530865baf","originalAuthorName":"陈蒙"},{"authorName":"王树林","id":"0498b62c-693b-4c01-a545-241bb9528798","originalAuthorName":"王树林"},{"authorName":"李生娟","id":"455a3872-8ba1-4b5f-b2a5-b54234e51b79","originalAuthorName":"李生娟"},{"authorName":"徐波","id":"f3b3bdec-e87a-421c-95d1-18e2aa4b2754","originalAuthorName":"徐波"}],"doi":"10.3969/j.issn.1001-9731.2015.10.025","fpage":"10123","id":"641c2dff-53b4-4952-a20f-ed1a4eb4c3a0","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"111539b5-3ee2-4a63-b8bc-da3632f3042c","keyword":"超声化学","originalKeyword":"超声化学"},{"id":"65e929fc-ea35-4617-82cf-c9cdeecb0ffe","keyword":"介孔纳米γ-Al2O3","originalKeyword":"介孔纳米γ-Al2O3"},{"id":"a78a60f5-d567-409b-8930-63d117ef8dee","keyword":"改性","originalKeyword":"改性"},{"id":"44caf428-c1d9-42a2-8072-b4c7808438de","keyword":"织构","originalKeyword":"织构"}],"language":"zh","publisherId":"gncl201510025","title":"改性γ-Al2O3纳米颗粒的制备?","volume":"","year":"2015"},{"abstractinfo":"采用化学共沉淀法制备了Al2O3数量分数为0%~30%的ZrO2(3Y)/Al2O3纳米复合粉体,研究了Al2O3含量和煅烧温度对粉体相结构、晶粒尺寸和晶格畸变的影响.结果表明:800℃×2 h煅烧的复合粉体只出现t-ZrO2相,不出现Al2O3的任何晶相;Al2O3的添加抑制了ZrO2(3Y)晶粒的增长和四方相向单斜相的结构相变,使相变温度显著提高,晶格畸变增大.","authors":[{"authorName":"张永胜","id":"abc616be-df0e-4c2b-8226-5db8ef7848da","originalAuthorName":"张永胜"},{"authorName":"胡丽天","id":"6a221e83-4139-4f60-b286-dcbe633b201a","originalAuthorName":"胡丽天"},{"authorName":"袁双玲","id":"ee6368f0-0bd0-49d6-8870-ff2548679cef","originalAuthorName":"袁双玲"},{"authorName":"陈建敏","id":"2d8eda22-fefd-4ca6-9172-89ad493be294","originalAuthorName":"陈建敏"},{"authorName":"刘维民","id":"26532aa6-0f49-4279-87ea-eb1cc1a54b79","originalAuthorName":"刘维民"}],"doi":"10.3969/j.issn.1000-3738.2006.07.022","fpage":"75","id":"aadb355a-983c-4aef-84aa-090a2456a905","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"487a7323-9609-45b2-a1cb-91da480776de","keyword":"ZrO2(3Y)/Al2O3纳米复合粉体","originalKeyword":"ZrO2(3Y)/Al2O3纳米复合粉体"},{"id":"4c81fd54-fc56-4fdf-9514-ee77468302bf","keyword":"相变","originalKeyword":"相变"},{"id":"1701b867-835e-441a-91a3-80d8825133e2","keyword":"晶格畸变","originalKeyword":"晶格畸变"}],"language":"zh","publisherId":"jxgccl200607022","title":"不同Al2O3含量ZrO2(3Y)/Al2O3纳米复合粉体的制备与表征","volume":"30","year":"2006"},{"abstractinfo":"将含氢等离子蒸发法制备的Al2O3/Al 纳米复合粉体冷压成直径25nm、厚度为2nm的块材,并通过620℃,40min 热烧结和变形量为55%的冷轧形处理使样品的相对密度达到99%。对高致密Al2O3/Al纳米复合材料的拉伸实验表明:其屈服强度σ0.2和断裂强度σb分别为粗晶Al的12-16倍和5-6倍,延伸率δ比同质冷轧粗晶Al约高28%.表征了Al2O3/Al 纳米复合材料的结构和热稳定性,研究了晶粒细化效应、非晶Al2O3/Al弥散增强和冷变形加工硬化等对材料强度的影响。探讨了Al2O3/Al纳米复合材料的强化机制。","authors":[{"authorName":"丛洪涛","id":"a29aee96-56ad-4a8e-8dd1-c3527ac844c0","originalAuthorName":"丛洪涛"},{"authorName":"杨志卿","id":"bb895f3b-2c88-4bba-ac99-3ff1b9824e5d","originalAuthorName":"杨志卿"},{"authorName":"贺连龙","id":"57fd4e46-3469-4757-ab9a-49d2143427ba","originalAuthorName":"贺连龙"}],"categoryName":"|","doi":"","fpage":"320","id":"d7a593b2-a114-4d48-a6ce-9f933fdabea1","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"057ecb03-d987-4ee1-b763-a28cb13322ef","keyword":"Al2O3/Al","originalKeyword":"Al2O3/Al"},{"id":"31a71ccc-a548-4b2e-9fac-131c67b90355","keyword":"null","originalKeyword":"null"},{"id":"96498a43-0b88-4295-80b5-2c15baefafb7","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2003_3_18","title":"Al2O3/Al纳米复合材料的强化机制","volume":"39","year":"2003"},{"abstractinfo":"将含氢等离子蒸发法制备的Al2O3/Al纳米复合粉体冷压成直径为25 mm、厚度为2 mm的块材,并通过620℃,40 min热烧结和变形量为55%的冷轧形变处理使样品的相对密度达到99%.对高致密Al2O3/Al纳米复合材料的拉伸实验表明:其屈服强度σ0.2和断裂强度σb分别为粗晶Al的12-16倍和5-6倍,延伸率δ比同质冷轧粗晶Al约高28%.表征了Al2O3/Al纳米复合材料的结构和热稳定性,研究了晶粒细化的强化效应、非晶Al2O3弥散增强和冷变形加工硬化等对材料强度的影响.探讨了Al2O3/Al纳米复合材料的强化机制.","authors":[{"authorName":"丛洪涛","id":"0d4d3b51-a370-4fb1-b543-833b721d7325","originalAuthorName":"丛洪涛"},{"authorName":"杨志卿","id":"83efaa05-ff18-4677-b49a-5028ce20b03f","originalAuthorName":"杨志卿"},{"authorName":"贺连龙","id":"76eed70a-659a-441d-9bb5-6aea48683ffa","originalAuthorName":"贺连龙"},{"authorName":"卢柯","id":"ef2d6de3-3d49-4779-a93d-ae0bf47f86fa","originalAuthorName":"卢柯"}],"doi":"10.3321/j.issn:0412-1961.2003.03.020","fpage":"320","id":"1772d742-7960-4d1a-a6a3-b066daba2382","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"81022ae0-2d12-41f2-86c0-5773619043c4","keyword":"Al2O3/Al纳米复合材料","originalKeyword":"Al2O3/Al纳米复合材料"},{"id":"63f341f2-799d-47b5-85ee-c7ad4162c042","keyword":"拉伸性能","originalKeyword":"拉伸性能"},{"id":"340aed05-6749-4b5b-9c45-55b43cbdf1af","keyword":"强化机制","originalKeyword":"强化机制"}],"language":"zh","publisherId":"jsxb200303020","title":"Al2O3/Al纳米复合材料的强化机制","volume":"39","year":"2003"}],"totalpage":12097,"totalrecord":120970}