欢迎登录材料期刊网

材料期刊网

高级检索

通过热蒸发法,以金为催化剂成功制备了Mn掺杂SnO2纳米带.并采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线荧光光谱(XRF)表征了Mn掺杂纳米带的结构和性质.结果表明样品表面光滑、平整,结晶良好,结构单一.紫外-可见光吸收光谱测试表明Mn掺杂二氧化锡纳米带在紫外区有强的吸收,其带隙为3.4 eV,吸收带边波长变为364.7 nm,比二氧化锡的吸收边344 nm红移了约20 nm.光致发光光谱(PL)显示Mn掺杂SnO2纳米带在波长为550~750 nm范围发光谱线的强度高于纯净的纳米带.光致发光谱共有3个发光峰,分别位于585nm、626 nm和673 nm处.在673 nm处的发光峰主要由纳米带中的O原子空位引起;585nm及626nm处的发光峰源于纳米带中掺杂Mn的4T1 (4G)→6 A1 (6S)跃迁光发射.

参考文献

[1] Tarwala N L;Devanb R S;Mab Y R et al.Spray deposited localized surface plasmonic Au-ZnO nanocomposites for solar cell application[J].Electrochimica Acta,2012,72(07):32.
[2] Lu JG;Fujita S;Kawaharamura T;Nishinaka H .Roles of hydrogen and nitrogen in p-type doping of ZnO[J].Chemical Physics Letters,2007(1-3):68-71.
[3] Zhang, L.Q.;Ye, Z.Z.;Lu, B.;Lu, J.G.;Huang, J.Y.;Zhang, Y.Z.;Xie, Z..Defect-induced ferromagnetism in insulating Mn-P codoped ZnO grown in oxygen-rich environment[J].Solid State Communications,2013:16-20.
[4] Hwang, I.-S.;Kim, S.-J.;Choi, J.-K.;Jung, J.-J.;Yoo, D.J.;Dong, K.-Y.;Ju, B.-K.;Lee, J.-H. .Large-scale fabrication of highly sensitive SnO _2 nanowire network gas sensors by single step vapor phase growth[J].Sensors and Actuators, B. Chemical,2012(1):97-103.
[5] Singh, N.;Yan, C.;Lee, P.S. .Room temperature CO gas sensing using Zn-doped In_2O_3 single nanowire field effect transistors[J].Sensors and Actuators, B. Chemical,2010(1):19-24.
[6] B. Liu;J.Y. Wang;F.Z. Li;Y.C. Zhou .Theoretical elastic stiffness, structural stability and thermal conductivity of La_2T_2O_7 (T=Ge, Ti, Sn, Zr, Hf) pyrochlore[J].Acta materialia,2010(13):4369-4377.
[7] Wang, GX;Park, JS;Park, MS;Gou, XL .Synthesis and high gas sensitivity of tin oxide nanotubes[J].Sensors and Actuators. B, Chemical,2008(1):313-317.
[8] Haridas, D.;Gupta, V..Study of collective efforts of catalytic activity and photoactivation to enhance room temperature response of SnO_2 thin film sensor for methane[J].Sensors and Actuators, B. Chemical,2013:741-746.
[9] Ge L Q;Ji J Y;Tian T et al.Fabrication of the hollow SnO2 nanoparticles contained spheres as extreme ultraviolet (EUV) target[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,358(01):88.
[10] Ding, J.;Wang, M.;Yan, X.;Zhang, X.;Ran, C.;Chen, H.;Yao, X..Microstructures, surface states and field emission mechanism of graphene-tin/tin oxide hybrids[J].Journal of Colloid and Interface Science,2013:40-44.
[11] Kiyoharu Tadanaga;Takayuki Fujii;Atsunori Matsuda .Micropatterning of SnO_2 thin films using hydrophobic-hydrophilic patterned surface[J].Ceramics International,2004(7):1815-1817.
[12] Wang L J;Lin J Y;Ye Y et al.Synthesis and field emission properties of SnO2 nanowires[J].Physical Status Solidi,2012,9(01):52.
[13] Calestania D;Zha M;Zappettinia A et al.Structural and optical study of SnO2 nanobelts and nanowires[J].Materials Science and Engineering,2005,25(5-8):625.
[14] Li, LJ;Yu, K;Wu, J;Wang, Y;Zhu, ZQ .Structure and humidity sensing properties of SnO2 zigzag belts[J].Crystal Research and Technology: Journal of Experimental and Industrial Crystallography,2010(5):539-544.
[15] Lin Z D;Guo Chunliang et al.Abnormal photoelectrical properties and gas sensing of mesoporous Sn0.9 Ti0.1O2 film under UV light[J].Materials Letters,2013,102-103(07):47.
[16] Junhong Chi;Honglei Ge;Juan Wang;Yalu Zuo;Li Zhang .Synthesis and electrical and magnetic properties of Mn-doped SnO_(2) nanowires[J].Journal of Applied Physics,2011(8):083907-1-083907-5.
[17] 潘书生 .氮掺杂SnO<,2>薄膜生长与物性研究[D].中国科学院合肥物质科学研究院,2007.
[18] 闫武钊,林林,陈永虎,尹民.Mn4+掺杂的新型铝酸盐红色长余辉材料[J].发光学报,2008(01):114-118.
[19] 蒋凯,余兴海,叶明新,黄玮石,黄京根.Mn4+在尖晶石和钙钛矿相关结构铝酸盐中的发光[J].发光学报,2003(05):517-522.
[20] 黄在银,柴春芳,吴健,袁爱群,谭学才,周泽广,刘绍刚.SnO2纳米带的水辅助生长与表征[J].无机化学学报,2006(11):2037-2042.
[21] 王清珊,刘华芳,张彩慧,常树岚.红橙蓝发光Ce/Mn:Cd0.5Zn0.5B4O7材料和体系多重能量传递[J].稀有金属材料与工程,2011(03):479-482.
[22] 杨志平,赵方亮,李盼来,路亚娟,李小宁.Ca10(Si2O7)3Cl2:Eu2+Mn2+单-基质白光荧光粉的发光性质[J].中国稀土学报,2009(04):506-509.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%