{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对天然气管道在多相流状态下的管道效率与减阻率的关系进行了理论分析,以水-空气混合流体模拟天然气管道中的分层流与环状流,在65 mm的水平管中对聚合物的多相流减阻进行了试验研究.理论计算与试验结果都表明,聚合物对多相流的减阻率随表观气速的增大而略有降低;对液体有62%减阻率的聚合物,对环状流的减阻率可达到40%左右,对分层流的减阻率可达到26%左右,使多相流的管道效率明显提高.","authors":[{"authorName":"刘磊","id":"cbfcc07d-eef8-43a6-a0ed-a1c071b09ef5","originalAuthorName":"刘磊"},{"authorName":"孙贺东","id":"371bc57c-ddc6-495d-a7e4-5ab33b0a5a07","originalAuthorName":"孙贺东"},{"authorName":"钱焕群","id":"3bf2863b-5864-4b8f-8ef4-f8678396e28a","originalAuthorName":"钱焕群"},{"authorName":"周芳德","id":"6cb95678-e190-45b4-8aca-a4ab09fe762a","originalAuthorName":"周芳德"}],"doi":"","fpage":"441","id":"530c7656-44f8-447e-9014-538886020efa","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a2cf563a-fc2a-4018-a6ae-fa0e40e4dec0","keyword":"气体-液体流动","originalKeyword":"气体-液体流动"},{"id":"485cdd93-d738-433e-a9f5-9bbe9136bef2","keyword":"多相流","originalKeyword":"多相流"},{"id":"f3f3db7b-d352-4695-9329-a09f49bf1bb4","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"9c98bc1e-58f0-44c0-8c01-404f996a530e","keyword":"减阻","originalKeyword":"减阻"}],"language":"zh","publisherId":"gcrwlxb200303023","title":"分层流与环状流中聚合物减阻效应研究","volume":"24","year":"2003"},{"abstractinfo":"分别以牛顿流体和非牛顿流体为液相,研究了垂直管中零净液流量气液两相流的流动特性.提出了零净液流量气液两相流动模型,应用这一模型计算了零净液流量气液两相流的持液率和压力降,模型计算结果与试验结果相符.研究结果表明,零净液流量气液两相流与常规气液两相流相比具有特殊性,表现为其持液率仅由质量平衡方程控制,其摩擦阻力压力降为负值.\n","authors":[{"authorName":"刘磊","id":"5a3604de-ebdf-412e-bbac-7290d91c5396","originalAuthorName":"刘磊"},{"authorName":"周芳德","id":"5a65f5c2-538b-40e5-80fd-aaa8f1942692","originalAuthorName":"周芳德"}],"doi":"","fpage":"365","id":"cea0001c-42df-49d1-91c8-b35686d2c6b0","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"fc041fa9-2d0e-40b7-be5e-01ca7f58e073","keyword":"气体-液体流动","originalKeyword":"气体-液体流动"},{"id":"362d9308-9412-42cb-8015-7f57dcec1a4c","keyword":"两相流","originalKeyword":"两相流"},{"id":"732a9bd2-1698-4bab-a50d-d2965051eb2c","keyword":"复杂流动","originalKeyword":"复杂流动"},{"id":"72478fe1-6739-479f-a521-cb358ad71352","keyword":"压力降","originalKeyword":"压力降"},{"id":"dbaa3762-f27a-4280-8238-5d2365244d55","keyword":"持液率","originalKeyword":"持液率"}],"language":"zh","publisherId":"gcrwlxb200203030","title":"零净液流量两相流持液率与阻力特性研究","volume":"23","year":"2002"},{"abstractinfo":"现有关于微尺度下气体流动特性的文献结果差异很大,甚至互相矛盾.文中提出入口效应以及充分发展段的流动特性与常规尺度的差异可能是影响微尺度下气体流动特性的关键因素.搭建了单相气体流动特性实验研究系统,针对这一影响因素对气体流动特性的影响规律进行了系统分析,证实了上述结论,发现微尺度下充分发展段流体的摩擦阻力明显小于常规理论预测值.针对微尺度下气体流动特性进行了系统分析.","authors":[{"authorName":"张田田","id":"b1aee6d3-e202-40fd-a8fd-9bf44e4b9dde","originalAuthorName":"张田田"},{"authorName":"贾力","id":"f7b2063d-3559-4128-8af8-448ec5f77667","originalAuthorName":"贾力"},{"authorName":"李成文","id":"4ae52cec-d6b6-4a3c-8ebe-c3c237b29852","originalAuthorName":"李成文"}],"doi":"","fpage":"854","id":"6d9d2d4e-819a-489a-ab4b-3ef07304db79","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"b5a67e1a-a1c9-481f-806c-d84c06eb5132","keyword":"微通道","originalKeyword":"微通道"},{"id":"f71e3a78-be59-4401-82be-6163c87ca703","keyword":"流动特性","originalKeyword":"流动特性"},{"id":"67cd1a52-5856-43ea-8f3c-92a7938b7534","keyword":"入口效应","originalKeyword":"入口效应"},{"id":"45703a5c-c7d5-4d15-a499-9393cd7bed56","keyword":"可压缩性","originalKeyword":"可压缩性"}],"language":"zh","publisherId":"gcrwlxb200905037","title":"微尺度气体流动特性实验研究","volume":"30","year":"2009"},{"abstractinfo":"高炉内液体流动现象的研究对控制高炉工艺过程具有重要意义.介绍了目前可描述高炉内液体流动规律各模型的内容、局限性和在高炉工艺上的应用特点.通过对比可知,在填充床层区域大小尺度上,笔者前期建立的模型更全面地描述了填充床层对运动液体的作用.并以此认识为基础,给出了确定该模型参数的实验方法.另外,在填充颗粒大小尺度上,给出了计算机模拟床层内非润湿液流分布的做法,进而据此给出了该模型参数的预测方法.","authors":[{"authorName":"王成善","id":"43c0f329-ee32-4cdb-8fbc-5204ecd97efa","originalAuthorName":"王成善"},{"authorName":"郑少波","id":"a4cbb1ae-48d5-42a7-a0f2-c1321b7eba83","originalAuthorName":"郑少波"},{"authorName":"蒋国昌","id":"65966a4a-2bc3-4bfd-93b0-8286f21c7c42","originalAuthorName":"蒋国昌"},{"authorName":"肖兴国","id":"029cd38f-aa50-4a13-a8e9-deed866db030","originalAuthorName":"肖兴国"},{"authorName":"王文忠","id":"4a4e0a51-5dbc-46cf-b4fd-d2bff5467e3f","originalAuthorName":"王文忠"}],"doi":"","fpage":"1","id":"1603a242-66b5-4e86-a6a3-aed5a13d570c","issue":"1","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"16a4314b-41e3-4403-a784-c2b911470d7b","keyword":"非润湿液滴","originalKeyword":"非润湿液滴"},{"id":"471d676a-44b1-49fa-8252-548ab70b305f","keyword":"液体流动","originalKeyword":"液体流动"},{"id":"d1f00577-23a0-499c-b0d4-fe0c72730d0b","keyword":"填充床","originalKeyword":"填充床"}],"language":"zh","publisherId":"gtyjxb200901001","title":"高炉内的液体流动现象","volume":"21","year":"2009"},{"abstractinfo":"通过对沸腾气泡在液体中的受力分析,建立了沸腾气泡长大过程的动力学方程;进而获得了沸腾气泡的生长速率与脱离直径的计算方法.采用图象捕集与处理系统,对竖直矩形通道内液体流动沸腾气泡长大与脱离行为进行实验测定,结合模型求解,获得了气泡生长速率、气泡脱离直径、气泡与加热壁面的接触角等参数随操作条件的变化;由模型计算所得的气泡脱离直径与实测值较为符合.","authors":[{"authorName":"于志家","id":"43cc0c68-7b55-4d10-a670-34c219799caf","originalAuthorName":"于志家"},{"authorName":"孙成新","id":"d68d8e83-f2de-475c-b0db-c9921ad34f34","originalAuthorName":"孙成新"},{"authorName":"赵宗昌","id":"1eefe2e9-bf74-45ab-9bfd-80d3c0b60009","originalAuthorName":"赵宗昌"},{"authorName":"孙相","id":"b3b17ac1-1465-4d2f-b83c-e45cf8afbfd3","originalAuthorName":"孙相"},{"authorName":"綦文涛","id":"04d796b2-9484-4cf3-99b5-dbb2d0b4dec1","originalAuthorName":"綦文涛"}],"doi":"","fpage":"354","id":"2cde622a-467a-4179-8d1f-1cb81f260be7","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"4e6c4537-2688-44cc-90a8-f657026326f7","keyword":"沸腾","originalKeyword":"沸腾"},{"id":"993493f4-f3f1-403c-9255-97374adc11a1","keyword":"气泡生长速率","originalKeyword":"气泡生长速率"},{"id":"1b3036b5-dc6d-4239-a18b-acb567bd6e44","keyword":"气泡脱离直径","originalKeyword":"气泡脱离直径"},{"id":"4071771a-d351-42e1-85bf-3bdfafa6e899","keyword":"接触角","originalKeyword":"接触角"}],"language":"zh","publisherId":"gcrwlxb200103027","title":"竖直矩形通道内液体流动","volume":"22","year":"2001"},{"abstractinfo":"当颗粒平均直径小于90μm时,微细多孔介质中的流动特性存在稀薄气体效应.","authors":[{"authorName":"黄寓理","id":"1ce6ef41-a24a-433e-8b4c-5cc78fb29bf3","originalAuthorName":"黄寓理"},{"authorName":"姜培学","id":"53320f88-a066-47ce-bd26-60dd02e460c6","originalAuthorName":"姜培学"},{"authorName":"胥蕊娜","id":"b091d7c9-8414-4a72-b23d-9f3a3132221f","originalAuthorName":"胥蕊娜"}],"doi":"","fpage":"1360","id":"f92e83f7-ff2a-4436-9275-ba92db71e5d2","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3ef93b07-1e22-4167-b47d-5a0adcf75db5","keyword":"微细多孔介质","originalKeyword":"微细多孔介质"},{"id":"972fc5fd-03e7-4c1b-b0f2-b62df5a3f866","keyword":"实验研究","originalKeyword":"实验研究"},{"id":"7220f4d0-9db0-462f-a22c-8119407cfb7d","keyword":"摩擦因子","originalKeyword":"摩擦因子"}],"language":"zh","publisherId":"gcrwlxb200908028","title":"气体在微细多孔介质中的流动阻力研究","volume":"30","year":"2009"},{"abstractinfo":"为了解决往复轴磁性液体密封中存在的问题,我们研究了往复轴以不同速度和行程运动时,密封间隙内磁性液体流动状态.重点研究了:往复轴密封间隙内磁性液体流动机理;往复轴运动所带走磁性液体的量;往复轴磁性液体密封的失效原因;设计往复轴磁性液体密封的新结构,实践表明所设计的新结构在某些应用场合是非常有效的.","authors":[{"authorName":"李德才","id":"c48f4689-27e3-4ce7-bf8b-4cee9b90ef33","originalAuthorName":"李德才"},{"authorName":"兰惠清","id":"76079aa7-af51-4a02-9721-c304cffb1bdc","originalAuthorName":"兰惠清"},{"authorName":"白晓旭","id":"5417f12d-cc84-44d5-b01c-cce7b19d0fe8","originalAuthorName":"白晓旭"},{"authorName":"杨庆新","id":"7a2c3128-6a4b-411b-92e7-6dcd6cefaa5f","originalAuthorName":"杨庆新"}],"doi":"","fpage":"151","id":"215c8cfc-9c0a-43e0-a48c-d08803dd54ab","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"04b79c4a-79e3-46a6-b68a-2df2b8f28e9c","keyword":"密封间隙","originalKeyword":"密封间隙"},{"id":"bbb1541d-1d4a-490b-b0aa-a9692084b5f9","keyword":"往复轴","originalKeyword":"往复轴"},{"id":"031a6aa5-5d60-4416-9864-2bacdfcb9d88","keyword":"磁性液体","originalKeyword":"磁性液体"}],"language":"zh","publisherId":"gncl200302012","title":"往复轴磁性液体密封间隙内磁性液体流动机理的研究","volume":"34","year":"2003"},{"abstractinfo":"研究了流动催化剂法制备纳米碳纤维时反应炉内的气体流动状态对制备纳米碳纤维的影响.利用在适宜区域内放置扰流管的方法改变气体流动状态,能大量制备纯净小直径的气相生长纳米碳纤维.气体流动状态通过影响催化剂颗粒形成,即催化剂颗粒的大小、数量等,从而影响纳米碳纤维的直径和产率.","authors":[{"authorName":"侯鹏翔","id":"2528d6a4-5033-4589-bb88-7e8172291bed","originalAuthorName":"侯鹏翔"},{"authorName":"白朔","id":"03a651b9-2af3-4862-9979-7ddc3fa3a5e8","originalAuthorName":"白朔"},{"authorName":"范月英","id":"ffdbe93a-6bfb-4092-b510-a5253da3f92c","originalAuthorName":"范月英"},{"authorName":"沈祖洪","id":"0a8e745e-3cdc-4dca-aa7d-dd174487b979","originalAuthorName":"沈祖洪"},{"authorName":"成会明","id":"31f8131e-acdb-4288-bf25-dde2ae9fca92","originalAuthorName":"成会明"}],"doi":"10.3969/j.issn.1007-8827.2000.04.005","fpage":"17","id":"c77c88ed-0dd4-4c0e-a944-7fea6c907439","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"173433eb-b24c-4a5c-aab6-1086d2e9a0df","keyword":"纳米碳纤维","originalKeyword":"纳米碳纤维"},{"id":"4760745d-5cd9-40c9-888e-717bf86f401d","keyword":"气相生长","originalKeyword":"气相生长"},{"id":"b869e115-2111-4b28-bcbe-5638855a0a3a","keyword":"制备","originalKeyword":"制备"}],"language":"zh","publisherId":"xxtcl200004005","title":"气体流动状态对纳米碳纤维制备的影响","volume":"15","year":"2000"},{"abstractinfo":"<正> 一、引言 研究顶吹气体射流冲击下液体流场中的流动现象对于深入认识氧气顶吹炼钢等过程十分重要,国内外学者曾在这方面做了很多工作。其中,文献相继提出了熔池液体流场中流动现象的数模,都假设射流冲击形成的凹陷面上涡量与径向坐标的比值为一常数","authors":[{"authorName":"杜嗣琛","id":"6bad945b-4cdd-4806-85e3-29a36f2c75d7","originalAuthorName":"杜嗣琛"},{"authorName":"张家芸","id":"7b9d7995-d6c5-4225-95d7-8a0c3e075fa6","originalAuthorName":"张家芸"},{"authorName":"魏寿昆","id":"8f72ebff-f879-4a11-9051-8cc946278d24","originalAuthorName":"魏寿昆"}],"categoryName":"|","doi":"","fpage":"137","id":"c9f685e3-745a-40c9-a52c-aee43fca9cc1","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1986_5_7","title":"顶吹气体射流冲击下熔池流动的数学模型","volume":"22","year":"1986"},{"abstractinfo":"气体混合流动在MEMS的应用中常常遇到.本文采用直接模拟Monte Carlo方法研究了氮气和氧气在微尺度中的流动混合问题.数值模拟中设定两种气体分别以不同的速度,相同的数密度进入微槽道.当经过分割平板之后,两种气体发生混合.在对结果的分析中发现,进入速度对两种气体完全混合后的混合距离,以及完全混合后的单组份气体占混合气体的比例都会产生重要的影响.","authors":[{"authorName":"祁志国","id":"b2aeae88-48da-47c2-9012-25ea8050a167","originalAuthorName":"祁志国"},{"authorName":"杜建一","id":"0c4e6667-3559-4200-a434-8eae8a215d68","originalAuthorName":"杜建一"},{"authorName":"黄典贵","id":"faae9dca-21b6-4bd9-a0a0-4ecea6348d79","originalAuthorName":"黄典贵"},{"authorName":"徐建中","id":"1f050641-645a-4714-8a68-d54ba364af45","originalAuthorName":"徐建中"},{"authorName":"张震宇","id":"0370a257-5639-49bf-be43-a6f6c2777611","originalAuthorName":"张震宇"}],"doi":"","fpage":"579","id":"8d46f5f2-f478-4c81-b24f-395148504f1b","issue":"4","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3082a638-597b-4fbf-8630-6ed2b9750f69","keyword":"气体混合","originalKeyword":"气体混合"},{"id":"badee8f1-446e-4a0c-8630-1021fed7f29a","keyword":"微尺度流动","originalKeyword":"微尺度流动"},{"id":"fec94b20-11fc-49ac-8893-b496ac81c9c7","keyword":"MEMS","originalKeyword":"MEMS"},{"id":"fd50d512-8ea3-4187-b7b5-63971e951479","keyword":"DSMC","originalKeyword":"DSMC"}],"language":"zh","publisherId":"gcrwlxb200804010","title":"气体混合流动的DSMC方法模拟","volume":"29","year":"2008"}],"totalpage":1274,"totalrecord":12738}