{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"碳基薄膜作为一种新型的固体润滑材料其结构设计与调控一直是研究的重点与热点。近年来,在利用物理气相沉积法制备金属-碳多元薄膜时发现原位自形成纳米多层结构的奇特现象,研究表明在薄膜中形成纳米多层结构,可以很好地从微观尺度上增强薄膜材料的机械与摩擦学性能,从而利用纳米多层结构的自形成特性使润滑材料实现强韧一体化及多环境适应性。主要综述了在碳基薄膜制备过程中,复合元素、制备技术和沉积参数3种主要的影响因素分别对自形成纳米多层结构薄膜的生长和微观结构的影响规律,探讨了薄膜中纳米多层结构的自形成机制,展望了碳基薄膜自形成纳米多层结构的发展前景。","authors":[{"authorName":"王伟奇","id":"86d3272e-654e-4ac0-89d1-40ae34a82597","originalAuthorName":"王伟奇"},{"authorName":"吉利","id":"a89170e3-43f4-4ece-a673-8f9d4484d901","originalAuthorName":"吉利"},{"authorName":"宋惠","id":"bb2e4191-8c03-4034-a553-6076089baacd","originalAuthorName":"宋惠"},{"authorName":"李红轩","id":"358e53ee-4a03-4f06-99a2-bae80fe97bd4","originalAuthorName":"李红轩"},{"authorName":"周惠娣","id":"4f94cee5-32dc-444f-a6cf-8a9d0376d69f","originalAuthorName":"周惠娣"},{"authorName":"陈建敏","id":"4373127b-8622-487f-bb81-467c23df5f4a","originalAuthorName":"陈建敏"}],"doi":"10.11896/j.issn.1005-023X.2015.015.002","fpage":"5","id":"6ec848b1-b397-4c37-9b24-5805a96e4f9d","issue":"15","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8124b2b6-704e-4f0c-bae1-bfe118c5c72e","keyword":"自形成","originalKeyword":"自形成"},{"id":"19609016-0928-41c3-93ca-d461235b6b4d","keyword":"纳米多层","originalKeyword":"纳米多层"},{"id":"73e3197e-e544-481d-9a23-316e82283b73","keyword":"碳基薄膜","originalKeyword":"碳基薄膜"}],"language":"zh","publisherId":"cldb201515002","title":"多元碳基薄膜中自形成纳米多层结构的研究进展?","volume":"","year":"2015"},{"abstractinfo":"为了研究不同结构铬掺杂碳基薄膜在高温下与铝合金的磨损机理,采用非平衡磁控溅射在YT15刀具表面沉积Cr/CrC/DLC单周期和Cr/(CrC-DLC)n多周期多层膜,在24、200和400℃下与A319和A390铝合金进行摩擦试验.采用扫描电子显微镜、原子力显微镜、纳米压痕仪、拉曼光谱仪、销盘磨损仪对薄膜的形貌结构、力学和摩擦学性能进行测试.研究表明:多周期多层膜结构打断薄膜柱状生长,提高膜基结合力.两种薄膜表面粗糙度和硬度分别为4.3 nm和5.4 nm、9.8 GPa和9.0 GPa.磨球表面转移层由硅、石墨以及剥落的薄膜碎片组成,连续的转移层降低摩擦因数;但随着温度升高,转移层的连续性被破坏,导致摩擦因数升高.在高温摩擦过程中,多周期多层膜磨损逐渐释放出DLC子膜层,通过DLC子膜层的石墨化转变来保持低摩擦因数,提高薄膜寿命.薄膜磨损由室温的磨料磨损转变为高温的粘着磨损和犁沟磨损,其中由于A390含有初晶硅使磨损以犁沟磨损为主.","authors":[{"authorName":"梁斐珂","id":"3daf3d71-7a03-4a4d-857c-c3a48c36336c","originalAuthorName":"梁斐珂"},{"authorName":"孙德恩","id":"8f6cbcd0-c0be-47d2-993d-bab6de450a49","originalAuthorName":"孙德恩"},{"authorName":"陈思琦","id":"4fc4353b-31c5-40cf-bd5d-7c7ea26350fd","originalAuthorName":"陈思琦"},{"authorName":"黄佳木","id":"c0ad46ce-50de-4d81-b927-35ef0515fef8","originalAuthorName":"黄佳木"},{"authorName":"裴晨蕊","id":"720ef55e-136e-41ab-88be-f122f43d28a8","originalAuthorName":"裴晨蕊"}],"doi":"10.11933/j.issn.1007-9289.2016.06.008","fpage":"52","id":"8fb78195-829e-4032-a64e-57cc28d28c82","issue":"6","journal":{"abbrevTitle":"ZGBMGC","coverImgSrc":"journal/img/cover/ZGBMGC.jpg","id":"79","issnPpub":"1007-9289","publisherId":"ZGBMGC","title":"中国表面工程"},"keywords":[{"id":"c9a62cea-c310-483b-847f-4e7251fcbeca","keyword":"碳化铬","originalKeyword":"碳化铬"},{"id":"955e4d9a-18b5-483f-b432-6478cb08dfa3","keyword":"类金刚石","originalKeyword":"类金刚石"},{"id":"f5112e55-815a-467d-a87b-9ff273b022a2","keyword":"摩擦因数","originalKeyword":"摩擦因数"},{"id":"d6d0aa7a-9a66-4362-8a61-68c766b18f03","keyword":"高温磨损","originalKeyword":"高温磨损"},{"id":"b74ffd5e-da37-474d-b78a-d6770548c8b8","keyword":"铝合金","originalKeyword":"铝合金"}],"language":"zh","publisherId":"zgbmgc201606008","title":"铬掺杂碳基自润滑薄膜与铝合金的高温磨损机理","volume":"29","year":"2016"},{"abstractinfo":"以甲烷为前驱体,采用等离子体增强化学气相沉积( PECVD)技术沉积类富勒烯碳基( FL-C∶H)薄膜于单晶硅基底材料表面。利用高分辨透射电镜( HRTEM)和拉曼光谱仪( Ramman)对薄膜的结构形貌进行表征;通过原位纳米力学测试系统和摩擦磨损试验机分析比较薄膜在不同甲烷流量的情况下的力学特征及摩擦学特性。实验结果表明:所制备的碳基薄膜具有类富勒烯纳米结构特征,甲烷流量对类富勒烯碳基薄膜( FL-C∶H)的结构和性能具有较大的影响;薄膜的弹性模量、硬度以及薄膜中的类富勒烯结构随着甲烷流量的增加而减小,但是摩擦系数对甲烷流量的变化不敏感。","authors":[{"authorName":"吴坤尧","id":"fb2f32f6-2d58-42c0-828e-0dd1dc329b3d","originalAuthorName":"吴坤尧"},{"authorName":"宗彦旭","id":"f19c8683-8efa-47ea-b4a9-7043e8249d24","originalAuthorName":"宗彦旭"},{"authorName":"龚珍彬","id":"9bbfbe57-bcd1-4a78-a4ec-ca88116477f8","originalAuthorName":"龚珍彬"},{"authorName":"杨常清","id":"1a7cfccc-8539-41a1-a6a7-f02627008538","originalAuthorName":"杨常清"},{"authorName":"李兆","id":"7ccd67e5-a174-4fba-9769-48da0c8010d1","originalAuthorName":"李兆"},{"authorName":"鲁媛媛","id":"b331bdf0-2464-4864-be7d-bc5710ea74c5","originalAuthorName":"鲁媛媛"},{"authorName":"孟志新","id":"0dd51498-5cbb-4e4f-803a-f1df9c2ddb65","originalAuthorName":"孟志新"}],"doi":"","fpage":"158","id":"4962c469-b050-413b-ac54-194a045ca6f4","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"8787eef1-8f34-4ec7-84dd-a6dee5e3f43b","keyword":"类富勒烯碳基薄膜","originalKeyword":"类富勒烯碳基薄膜"},{"id":"abc55a86-c7f0-4826-926e-43798670e60a","keyword":"甲烷流量","originalKeyword":"甲烷流量"},{"id":"9eed28f2-f30b-4367-912d-0c800f1dee76","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"756f77e3-5eff-495a-9686-ba1832542191","keyword":"摩擦学性能","originalKeyword":"摩擦学性能"}],"language":"zh","publisherId":"rgjtxb98201701028","title":"甲烷流量对类富勒烯碳基薄膜结构与摩擦学性能的影响","volume":"46","year":"2017"},{"abstractinfo":"非晶碳基薄膜在水中具有低摩擦磨损特性和好的耐腐蚀性,但在摩擦过程中容易发生局部剥落,进一步提高薄膜在水中的承载力是目前的热点研究方向之一.在综合分析非晶碳基薄膜的摩擦学性能及其改性,以及采用表面织构化提高材料承载力的基础上,阐述了将两者相结合以改善薄膜整体性能的研究现状和发展前景.","authors":[{"authorName":"吴行阳","id":"0bfd4ed9-45d9-47bc-8c1a-a7864858de88","originalAuthorName":"吴行阳"},{"authorName":"黄夏婧","id":"fcf70a0c-07fb-49c1-82b5-27379fc2987f","originalAuthorName":"黄夏婧"},{"authorName":"张建华","id":"aabcebb2-0800-4158-a4b4-85ad2fc68fda","originalAuthorName":"张建华"}],"doi":"","fpage":"87","id":"6e6bfba1-eef9-45d0-9744-84397089671e","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"78721d66-ef20-441c-80ca-37b4bee2f0ae","keyword":"水润滑","originalKeyword":"水润滑"},{"id":"9354f5f5-3dcd-4494-b7b5-064d9035d787","keyword":"类金刚石膜","originalKeyword":"类金刚石膜"},{"id":"f8dcc0e5-0f08-48e4-b8b8-f528e754844b","keyword":"摩擦化学","originalKeyword":"摩擦化学"},{"id":"56486280-1e9a-48e4-863b-4fbaf62536a8","keyword":"表面织构","originalKeyword":"表面织构"}],"language":"zh","publisherId":"bmjs201204027","title":"非晶碳基薄膜及其表面织构化后的水润滑性能研究进展","volume":"41","year":"2012"},{"abstractinfo":"目的 通过等离子刻蚀处理使基体表面更洁净,从而提高薄膜与基体的结合力.方法 采用阳极层离子源,通过不同的离子源功率和处理时间对M50轴承钢样品进行处理,并在处理过的样品表面制备钨掺杂类金刚石薄膜.利用原子力显微镜对等离子刻蚀处理前后的样品表面形貌进行研究,利用Raman光谱分析薄膜的微观结构,利用划痕仪对薄膜与基体的结合力进行研究.结果 不同的离子源功率和刻蚀时间,得到了不同的基体微观表面粗糙度;钨掺杂类金钢石薄膜的D峰和G峰分别在1350 cm?1附近和1580 cm?1附近,为典型的类金刚石结构,ID/IG值在1.5左右;未经等离子刻蚀前处理样品的膜/基结合力是23 N;而优化等离子刻蚀前处理参数样品的膜/基结合力高达69 N,最佳的离子源功率和刻蚀时间为2 kW、60 min.结论 等离子刻蚀前处理能够有效提高薄膜与基体的结合力.","authors":[{"authorName":"李振东","id":"9dfe3962-43b7-4614-ae7c-2fc2f0f40c83","originalAuthorName":"李振东"},{"authorName":"詹华","id":"a902ce8a-81d5-4240-93e8-beadabef0571","originalAuthorName":"詹华"},{"authorName":"王亦奇","id":"7eca85db-b7c0-48f6-9f36-3a5926eab1d3","originalAuthorName":"王亦奇"},{"authorName":"汪瑞军","id":"6ef6e5c0-afeb-434a-b066-cabc5c0ea25f","originalAuthorName":"汪瑞军"},{"authorName":"王伟平","id":"2b95c696-f0ab-4427-8043-d41a8046577b","originalAuthorName":"王伟平"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.01.011","fpage":"64","id":"1ca134fc-80fd-498a-ad14-c996e3acfb87","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"2d9c4465-3fb5-40a1-8bd2-35d03bce88cf","keyword":"等离子刻蚀","originalKeyword":"等离子刻蚀"},{"id":"8dda9965-31a4-44c2-b744-b58666840f69","keyword":"阳极层离子源","originalKeyword":"阳极层离子源"},{"id":"13f1c741-800d-4da4-a2e3-116398b4879c","keyword":"M50轴承钢","originalKeyword":"M50轴承钢"},{"id":"c40cb77a-98f9-4528-aec2-4e89c0424cd7","keyword":"钨掺杂类金刚石薄膜","originalKeyword":"钨掺杂类金刚石薄膜"},{"id":"6dd5d5bf-2c1b-4c99-bf83-ee83f77c1da5","keyword":"离子源功率","originalKeyword":"离子源功率"}],"language":"zh","publisherId":"bmjs201701011","title":"等离子体刻蚀前处理对碳基薄膜结合力的影响","volume":"46","year":"2017"},{"abstractinfo":"综述了碳基天然气储存材料的分类、特性和研究现状,并介绍了极有可能成为21世纪吸附材料的纳米碳材料:富勒烯和巴基管。","authors":[],"doi":"","fpage":"36","id":"a6d6a93e-cd95-4f42-a424-4eeeaeca8c41","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6f7ae855-e48c-4fa8-8324-681af6a6fea2","keyword":"天然气贮存 纤维活性炭 富勒烯 巴基管Carbon Materials for Natural Gas StorageZang Keyan ,Zhao Naiqin ,Ma Tiejun ,Li Jiajun (School of Materials Science and Engineering,Tianjin University,Tianjin 300072)","originalKeyword":"天然气贮存 纤维活性炭 富勒烯 巴基管Carbon Materials for Natural Gas StorageZang Keyan ,Zhao Naiqin ,Ma Tiejun ,Li Jiajun (School of Materials Science and Engineering,Tianjin University,Tianjin 300072)"}],"language":"zh","publisherId":"cldb200007012","title":"碳基天然气贮存材料","volume":"14","year":"2000"},{"abstractinfo":"以 1K PAN基碳纤维为增强体、以调制中温煤沥青为基体前躯体,分别在常压下和高压(40MPa、80MPa)下制备出了沥青基碳/碳复合材料。借助偏光显微镜对碳/碳复合材料试样进行的微观组织的观察发现,碳基体中既有域组织,也有镶嵌组织,而焦炭主要为细镶嵌组织.偏光试样经过酸液氧化腐蚀处理后,利用电子显微镜对其扫描观察,发现各向异性区域呈现出流线组织特征,流线纹路的疏密与沥青碳化时的压力有关.压力越高,纹路越密实,表明碳层面的取向性也就越好.","authors":[{"authorName":"孙乐民","id":"f4a91316-fb3e-4aee-96aa-5baddf08fc72","originalAuthorName":"孙乐民"},{"authorName":"李贺军","id":"d87195f2-f0f2-4a2f-b064-5932285ca461","originalAuthorName":"李贺军"},{"authorName":"张守阳","id":"a29e50f7-abfe-4f7f-adc4-4e9a380c86ca","originalAuthorName":"张守阳"}],"categoryName":"|","doi":"","fpage":"1111","id":"66800695-6f9c-4871-9d06-735017257936","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"cddb0449-f087-4426-863e-de47815b317a","keyword":"沥青","originalKeyword":"沥青"},{"id":"381bfec1-26c4-4008-bf38-d6cbe58f195d","keyword":" carbon-carbon composites","originalKeyword":" carbon-carbon composites"},{"id":"4fa3e02d-ddf0-4cae-b690-ba6052afb53f","keyword":" microstructures","originalKeyword":" microstructures"},{"id":"c2cb4f83-1504-4dfb-9883-b4de2e4acdb0","keyword":" high-pressure impregnation-carbonization","originalKeyword":" high-pressure impregnation-carbonization"}],"language":"zh","publisherId":"1000-324X_2000_6_12","title":"沥青基碳/碳复合材料的组织特性","volume":"15","year":"2000"},{"abstractinfo":"以1K PAN基碳纤维为增强体、以调制中温煤沥青为基体前躯体,分别在常压下和高压(40MPa、80MPa)下制备出了沥青基碳/碳复合材料.借助偏光显微镜对碳/碳复合材料试样进行的微观组织的观察发现,碳基体中既有域组织,也有镶嵌组织,而焦炭主要为细镶嵌组织.偏光试样经过酸液氧化腐蚀处理后,利用电子显微镜对其扫描观察,发现各向异性区域呈现出流线组织特征,流线纹路的疏密与沥青碳化时的压力有关.压力越高,纹路越密实,表明碳层面的取向性也就越好.","authors":[{"authorName":"孙乐民","id":"af801900-19cc-464d-b4c9-e8ba5d7d67f7","originalAuthorName":"孙乐民"},{"authorName":"李贺军","id":"76a7c8ae-87ec-4d42-83f2-3d58781cbf0f","originalAuthorName":"李贺军"},{"authorName":"张守阳","id":"aba8d121-9d08-4619-8167-5fb6301e3ccb","originalAuthorName":"张守阳"}],"doi":"10.3321/j.issn:1000-324X.2000.06.028","fpage":"1111","id":"1efdc2ac-f6b8-47a7-8641-01144493a06c","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"1d6540b3-9a1a-4e60-aa03-90c76ce625ff","keyword":"沥青","originalKeyword":"沥青"},{"id":"822c9c69-1af6-4e56-9ac7-87c2503c14cd","keyword":"碳/碳复合材料","originalKeyword":"碳/碳复合材料"},{"id":"13f8be79-2ea7-46ff-9c14-06bf65523cc8","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"fb9a0ccf-eb94-4dae-bd79-11aae462619a","keyword":"高压浸渍 -碳化","originalKeyword":"高压浸渍 -碳化"}],"language":"zh","publisherId":"wjclxb200006028","title":"沥青基碳/碳复合材料的组织特性","volume":"15","year":"2000"},{"abstractinfo":"以高纯石墨为对照材料,初步研究了热解碳基碳/碳复合材料的内耗行为,并根据实验结果提出了碳/碳复合材料的内耗机制:热滞弹性机制与静滞后型内耗机制。纤维/基体的界面内耗效应对碳/碳复合材料的内耗特性影响很大,它的存在使碳/碳复合材料产生了一些较为反常的内耗现象。","authors":[{"authorName":"侯向辉","id":"0c70ca15-8482-4643-b25e-7b4bd444b68f","originalAuthorName":"侯向辉"},{"authorName":"李贺军","id":"4ff6321c-4155-427c-89bb-1278b599a7c9","originalAuthorName":"李贺军"},{"authorName":"王灿","id":"e8218859-6436-4234-8313-5f18d21a7110","originalAuthorName":"王灿"},{"authorName":"朱震刚","id":"ed9fb637-f8ea-4a8b-bf23-0660fa4f10fd","originalAuthorName":"朱震刚"},{"authorName":"沈健","id":"3c54104c-aceb-4ef1-93db-769883e8147a","originalAuthorName":"沈健"}],"doi":"10.3321/j.issn:1000-3851.2001.01.021","fpage":"89","id":"6cc331c5-7d98-4c8d-83d4-0e2bd0abe34f","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"5ca011d2-583a-4bec-b683-5a1816e2f7ed","keyword":"碳/碳复合材料","originalKeyword":"碳/碳复合材料"},{"id":"9e64f1e7-9f86-4dca-9948-704c9f1f97b7","keyword":"热解碳","originalKeyword":"热解碳"},{"id":"dd8026a1-36bb-4c1e-b36b-422f0ee04b37","keyword":"内耗","originalKeyword":"内耗"}],"language":"zh","publisherId":"fhclxb200101021","title":"热解碳基碳/碳复合材料的内耗特征与机制","volume":"18","year":"2001"},{"abstractinfo":"简介了碳气凝胶材料的物理化学性质,阐述了碳气凝胶及其薄膜的潜在应用,综述了碳气凝胶薄膜的制备现状.联系结构特征,分析了影响碳气凝胶膜化制备的主要因素.对比无机气凝胶薄膜,提出了新的可能的制备方法.","authors":[{"authorName":"刘伟民","id":"a8be2f7a-3bcc-44e4-b5e6-f49c5133021e","originalAuthorName":"刘伟民"},{"authorName":"王朝阳","id":"1079cd90-97d0-4fbf-a91d-53704d22d086","originalAuthorName":"王朝阳"},{"authorName":"王红艳","id":"5fa5cb27-2778-4f08-a077-d45984afc617","originalAuthorName":"王红艳"},{"authorName":"唐永建","id":"26ca1ab9-4680-455f-ac7d-f3509746b336","originalAuthorName":"唐永建"}],"doi":"","fpage":"68","id":"334ccdda-fda4-458a-a8ab-75d272c1058c","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e122997d-4172-40ee-b1b5-dd1f76f669dc","keyword":"碳气凝胶薄膜","originalKeyword":"碳气凝胶薄膜"},{"id":"6e39641b-9025-4d72-9db2-3118b1f16c46","keyword":"溶胶-凝胶","originalKeyword":"溶胶-凝胶"},{"id":"1f5f6270-f3c8-4b51-8cce-925f065bdaf4","keyword":"电极","originalKeyword":"电极"},{"id":"faefb41b-2f99-4d3f-afab-1fd852c74b35","keyword":"超临界干燥","originalKeyword":"超临界干燥"},{"id":"b13c6640-0424-4de4-80b9-28f470a0a1dc","keyword":"常压干燥","originalKeyword":"常压干燥"},{"id":"7f448ebe-e453-4940-ad68-ea9c2778526e","keyword":"旋转涂膜","originalKeyword":"旋转涂膜"}],"language":"zh","publisherId":"cldb2006z1020","title":"碳气凝胶薄膜制备研究进展","volume":"20","year":"2006"}],"totalpage":3672,"totalrecord":36714}