{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"配制以 Al(NO3)3·9H2O、Mg(NO3)2·6H2O 和 TEOS 为前驱体原料的溶胶,使其增溶于 Triton X-100/正己醇/环己烷反相微乳液体系中,合成了堇青石纳米粉体.对微乳液拟三元相图、凝胶所需 pH 值及温度条件、溶胶凝胶机理及析晶过程进行了研究.结果表明,该方法合成纳米堇青石的最佳 pH 值为 5.5,微乳液体系的最佳增溶温度为 45℃.所得纳米粉体能在 950 ℃下低温致密化烧结,具有良好的介电性能(ε<3,tanδ<0.001;1 GHz),是应用于高频片式电感等电子元器件的理想介质材料.","authors":[{"authorName":"陆浩然","id":"f763f0f6-c2bd-4ff5-a5ce-bfcf8a0abe5c","originalAuthorName":"陆浩然"},{"authorName":"王少洪","id":"be03efb1-05f6-48e4-8048-e056bc9fdc4d","originalAuthorName":"王少洪"},{"authorName":"侯朝霞","id":"631df971-9320-4a26-b051-c663cb568434","originalAuthorName":"侯朝霞"},{"authorName":"王浩","id":"6515ba5f-7d38-4184-9e4b-a9a8b5b480c1","originalAuthorName":"王浩"},{"authorName":"牛厂磊","id":"1cd44fbc-d4a1-4f58-93f5-032ee262dcd7","originalAuthorName":"牛厂磊"},{"authorName":"薛召露","id":"3a45a13b-5c93-4b7f-9af4-c6fed643245f","originalAuthorName":"薛召露"},{"authorName":"王彩","id":"bf3104e7-9103-4fb5-828f-a063dba9b2b1","originalAuthorName":"王彩"},{"authorName":"胡小丹","id":"7236300d-a6bc-44fc-8e0b-35fbb144b8a4","originalAuthorName":"胡小丹"}],"doi":"","fpage":"155","id":"0865a6a2-c5b4-41f1-8e53-a271c8b59b7e","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f5c97f23-950e-49ca-8d4a-e98c61bf79de","keyword":"堇青石","originalKeyword":"堇青石"},{"id":"f2fe12c4-799b-4806-b954-19d71640a45e","keyword":"溶胶-微乳液-凝胶法","originalKeyword":"溶胶-微乳液-凝胶法"},{"id":"6b60c04b-3e48-425c-aa1a-704a9f0a431c","keyword":"拟三元相图","originalKeyword":"拟三元相图"},{"id":"0360826d-fb49-4fb8-a93b-eabf86f51a77","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"rgjtxb98201101030","title":"溶胶-微乳液-凝胶法合成堇青石陶瓷纳米粉体","volume":"40","year":"2011"},{"abstractinfo":"W/O微乳液制备的纳米羟基磷灰石粉体具有颗粒细小、团聚度低、分散性好、表面活性高等优点.综述了W/O微乳液制备纳米羟基磷灰石的原理;重点论述了影响粉体粒径和形貌的水油比、表面活性剂与助表面活性剂类型、前驱物浓度、反应温度等因素;并初步展望了该领域的研究发展趋势.","authors":[{"authorName":"王浩","id":"83de4e8a-f402-45b0-b388-271966d270d9","originalAuthorName":"王浩"},{"authorName":"王少洪","id":"708a4570-595f-4df1-a28e-73d673b7cb18","originalAuthorName":"王少洪"},{"authorName":"侯朝霞","id":"7f1b03e0-1607-49bf-ae52-82c8fcb83f08","originalAuthorName":"侯朝霞"},{"authorName":"胡小丹","id":"34c1d9e5-eeb2-44b5-a693-3777ac280d24","originalAuthorName":"胡小丹"},{"authorName":"陆浩然","id":"5678a859-b7ec-49a4-a32a-4347e53c9f40","originalAuthorName":"陆浩然"},{"authorName":"薛召露","id":"6a68b7de-0d3f-4db8-a7ef-8db0083744b1","originalAuthorName":"薛召露"},{"authorName":"牛厂磊","id":"ad430a5a-9524-4353-9477-b2b9e7be8dd6","originalAuthorName":"牛厂磊"},{"authorName":"王彩","id":"38096d7c-f740-451c-8307-b89a1d2336b4","originalAuthorName":"王彩"}],"doi":"","fpage":"75","id":"23b26311-7290-4e8d-9c3b-9431f3690ad3","issue":"13","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"717d4bee-8cd7-40cd-b86e-9e1dab993303","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"ea3a2d8e-398b-4f07-9102-22b0ba5be242","keyword":"W/O微乳液","originalKeyword":"W/O微乳液"},{"id":"269b0e6a-f303-4f13-afbc-a7171b2221f3","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"cldb201113017","title":"W/O微乳液制备纳米羟基磷灰石的影响因素研究","volume":"25","year":"2011"},{"abstractinfo":"以溶胶-凝胶法制得的纳米堇青石(2MgO-2Al2O3-5SiO2)粉体为原料,聚丙烯酸钠(PAAS)为分散剂,制备堇青石水基流延浆料并流延成型.对适于流延的堇青石粉体粒径、聚丙烯酸钠含量及流延坯片的微观形貌进行研究.结果表明:粉体粒径为600nm左右的堇青石粉体适用于制备水基流延浆料;分散剂聚丙烯酸钠最佳含量为1.5%(质量分数);得到的流延生坯微观结构均一,上下表面平整一致,不存在密度梯度,满足高频片式电感所用坯片的要求.","authors":[{"authorName":"牛厂磊","id":"3e46ff39-7e29-4b6f-a6b9-0dcb8fdc548e","originalAuthorName":"牛厂磊"},{"authorName":"王少洪","id":"3dd4d8c9-9009-4c95-8ebb-bd4f6a6fb1be","originalAuthorName":"王少洪"},{"authorName":"侯朝霞","id":"6d7f3059-b394-4643-9d02-e60c6a36e056","originalAuthorName":"侯朝霞"},{"authorName":"胡小丹","id":"b41ef3af-c4b9-4c84-a1cd-1b95e68bd7c4","originalAuthorName":"胡小丹"},{"authorName":"陆浩然","id":"b5beb67c-dd1d-4271-a8a6-ec5349e28ca1","originalAuthorName":"陆浩然"},{"authorName":"薛召露","id":"da346d9e-0402-4082-b1b3-80b2901f8162","originalAuthorName":"薛召露"},{"authorName":"王浩","id":"739615c3-10ce-4857-803d-d2d06e55e78c","originalAuthorName":"王浩"},{"authorName":"王彩","id":"49fa32e3-abc7-4709-841c-50b8fdf89f4b","originalAuthorName":"王彩"}],"doi":"10.3969/j.issn.1001-4381.2010.z2.010","fpage":"33","id":"503355a3-70c7-41d6-a404-1307d9eec639","issue":"z2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"44139309-ad1c-41ef-9edd-c074b18f1387","keyword":"水基流延","originalKeyword":"水基流延"},{"id":"ce5b6ea8-dfb9-449c-903a-7744938900df","keyword":"粒径","originalKeyword":"粒径"},{"id":"6e0a177a-9438-4abf-a75a-28fac18b5ae9","keyword":"分散剂","originalKeyword":"分散剂"},{"id":"ae41f406-f6cc-45ca-bac6-351fc8128d68","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"clgc2010z2010","title":"水基流延法制备堇青石坯片","volume":"","year":"2010"},{"abstractinfo":"具有良好生物相容性和生物活性的纳米羟基磷灰石(Ca10(PO4)6(OH)2,HA)被广泛应用在生物医学、环境功能材料等领域.反相微乳液法(W/O)制备纳米HA为实现高活性、低团聚、均一颗粒形貌及尺寸控制提供一种重要途径.综述目前国内外反相微乳液法制备纳米HA的研究进展及其机理;总结水油比、表面活性剂种类、助表面活性剂类型、反应物浓度等因素对制备纳米HA的影响;对反相微乳液法制备纳米HA的研究发展趋势进行前景展望.","authors":[{"authorName":"王彩","id":"2dce992b-d214-4c1f-83c2-63205ea83f2b","originalAuthorName":"王彩"},{"authorName":"王少洪","id":"4bb589f0-86a1-4591-87ee-02282b1ff291","originalAuthorName":"王少洪"},{"authorName":"侯朝霞","id":"9253bec4-1e13-469b-8173-68713d50633f","originalAuthorName":"侯朝霞"},{"authorName":"陆浩然","id":"68e86e5c-3477-4430-bf62-3369d1ee747c","originalAuthorName":"陆浩然"},{"authorName":"王浩","id":"10d99528-1d0b-43fa-b333-5a8a370c1a26","originalAuthorName":"王浩"},{"authorName":"胡小丹","id":"ad992b8a-2819-4324-8d9c-7d87f55c34ac","originalAuthorName":"胡小丹"},{"authorName":"薛召露","id":"994ff1ba-270e-482d-98c3-94b4416453e1","originalAuthorName":"薛召露"},{"authorName":"牛厂磊","id":"c60978d9-a363-433e-be0c-d66009c6be41","originalAuthorName":"牛厂磊"}],"doi":"33-1331/TJ.20111101.1150.004","fpage":"102","id":"5e559147-e29d-4304-81db-0193523a33f4","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"669496f3-50f1-470f-9b9f-a88c1317450e","keyword":"纳米羟基磷灰石","originalKeyword":"纳米羟基磷灰石"},{"id":"25eb12fa-0757-485b-b6b2-7e2c0bcf76b5","keyword":"反相微乳液法","originalKeyword":"反相微乳液法"},{"id":"a2f2820f-5390-4bcf-a145-4da26ac27d0a","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"bqclkxygc201106029","title":"反相微乳液法制备纳米羟基磷灰石的研究进展","volume":"34","year":"2011"},{"abstractinfo":"以Al(NO3)3·9H2O、Mg(NO3)2·6H2O和TEOS为前躯体原料,采用TritonX-100/n-Hexane/ Cyclohexane作为乳液反应体系合成了堇青石(2MgO· 2Al2O3·5SiO2)纳米粉体.采用目测法对形成稳定W/O型微乳液体系的拟三元相图进行了测试与绘制.结果表明:该粉体有效粒径为100nm,粉体团聚度较低,可于930℃下低温烧结,烧结体具有较高的致密度(大于理论密度的98%);烧结过程中a-堇青石直接从无定形态中析出;920℃烧结2h的陶瓷样品具有良好的介电性能(ε=2.87,tanδ=0.00011;1GHz),该材料具备与Ag电极低温共烧的条件,是应用于高频片式电感等电子元器件的理想介质材料.","authors":[{"authorName":"王少洪","id":"501ddc94-15d9-4aa5-bab9-b953c1a0f12f","originalAuthorName":"王少洪"},{"authorName":"陆浩然","id":"81f3b124-c6c9-43ad-8c49-f85bc2e6ff2b","originalAuthorName":"陆浩然"},{"authorName":"侯朝霞","id":"1d65fab1-fc32-4d85-86a2-06bd2606cad8","originalAuthorName":"侯朝霞"},{"authorName":"牛厂磊","id":"bde5e94b-06bc-4a15-8852-d74bce0ffe19","originalAuthorName":"牛厂磊"},{"authorName":"薛召露","id":"b5ed91a2-1dc0-4599-bff1-8238ad56d428","originalAuthorName":"薛召露"},{"authorName":"王浩","id":"14ab92ad-f40d-45dd-afd5-9f4323734c78","originalAuthorName":"王浩"},{"authorName":"王彩","id":"3ad6d258-5acb-4be8-a8d4-246bffc40668","originalAuthorName":"王彩"},{"authorName":"胡小丹","id":"5e4f50dd-de2b-420f-b409-f24143cf19cd","originalAuthorName":"胡小丹"}],"doi":"10.3969/j.issn.1001-4381.2010.z2.011","fpage":"36","id":"60ddac97-a83e-4fd9-b7d6-3a26f1bc623c","issue":"z2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"f177d56f-d112-4f80-ba42-4e0e8a11fd6f","keyword":"堇青石","originalKeyword":"堇青石"},{"id":"9a2b64e9-6757-490c-a423-297b5cede06c","keyword":"W/O微乳液","originalKeyword":"W/O微乳液"},{"id":"ab2de061-55be-48b3-8a12-aefd77b5496e","keyword":"介电性能","originalKeyword":"介电性能"},{"id":"ff06b77e-9951-4aec-b2d3-cfb5cd74bc40","keyword":"拟三元相图","originalKeyword":"拟三元相图"}],"language":"zh","publisherId":"clgc2010z2011","title":"TritonX-100/正己醇/环己烷反相微乳液合成堇青石纳米粉体及其性能研究","volume":"","year":"2010"},{"abstractinfo":"堇青石具有较低的介电常数和低热膨胀系数,被广泛应用在高频电子领域的绝缘材料、集成电路基片及电路模板中.综述了溶胶-凝胶法制备堇青石基介电陶瓷的研究现状,介绍了目前国内外堇青石溶胶-凝胶合成过程中添加剂、制备工艺、烧结制度等因素对其显微结构、力学性能和电性能的影响,探讨了溶胶-凝胶法制备堇青石粉体于低温下的烧结机理与析晶机制.","authors":[{"authorName":"王少洪","id":"01c3e090-372c-41be-968b-f88f29b35ee9","originalAuthorName":"王少洪"},{"authorName":"陆浩然","id":"25ed349d-69a2-47ad-bd87-b04969a16be6","originalAuthorName":"陆浩然"},{"authorName":"侯朝霞","id":"cdd0eb78-012d-45f9-a290-b1efccfc491d","originalAuthorName":"侯朝霞"},{"authorName":"牛厂磊","id":"d2797afe-baf9-4243-b0d6-2d18ddf5adcb","originalAuthorName":"牛厂磊"},{"authorName":"薛召露","id":"fb6e0fa6-9fd6-43e5-8955-32b87d9c9740","originalAuthorName":"薛召露"},{"authorName":"王浩","id":"d17705a5-87a0-49ca-bd9f-7f8f1050a5ad","originalAuthorName":"王浩"},{"authorName":"杨鸣春","id":"79f65cb8-959b-4bf4-8789-5fd7c688f2cb","originalAuthorName":"杨鸣春"},{"authorName":"付仲超","id":"98a29d27-1823-4df7-8ec2-35d47cbac5e3","originalAuthorName":"付仲超"},{"authorName":"孙斌","id":"1a69be00-78d0-4681-835c-0958af7f9ee2","originalAuthorName":"孙斌"}],"doi":"","fpage":"330","id":"75c2d064-077a-44fd-b7db-a3da453772e5","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bfdec775-4aab-424d-aad3-67e122a62a4f","keyword":"堇青石","originalKeyword":"堇青石"},{"id":"945aafc4-72a8-4ef9-a78e-172d6e9cc1d9","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"28d1d7f7-2577-47a6-9e5d-8999e0b98b7f","keyword":"添加剂","originalKeyword":"添加剂"},{"id":"b06ac46c-d690-4a00-95ed-f0cd08f5d4fa","keyword":"析晶机理","originalKeyword":"析晶机理"}],"language":"zh","publisherId":"cldb2010z1096","title":"添加剂和制备工艺对溶胶-凝胶法合成堇青石陶瓷析晶机理的影响","volume":"24","year":"2010"},{"abstractinfo":"通过溶胶-凝胶法制备堇青石纳米粉体,采用差热分析、阿基米德排水法、Zata电位仪等测试手段进行了性能表征;研究了添加剂B2O3、煅烧温度对烧结性能以及线收缩率、密度、吸水率等物理性能的影响.结果表明,添加适量B2O3可降低烧结温度、提高样品致密度;煅烧温度越高特别是高于析晶温度时,材料的致密化程度降低.经600℃煅烧的样品,烧结后的致密化程度达99%.","authors":[{"authorName":"王少洪","id":"87c8918b-74bc-4c5c-8fb8-2086434841c2","originalAuthorName":"王少洪"},{"authorName":"陆浩然","id":"e4b576f1-602b-4a38-8c4d-243cf778e7b2","originalAuthorName":"陆浩然"},{"authorName":"王朋","id":"21c91041-6e34-4923-9bb5-39d2c3089e78","originalAuthorName":"王朋"},{"authorName":"薛召露","id":"069903cc-a858-44ed-b316-f72e0efedc72","originalAuthorName":"薛召露"},{"authorName":"牛厂磊","id":"a7db9f8b-d924-4ee3-8327-66ff212d27a6","originalAuthorName":"牛厂磊"},{"authorName":"王浩","id":"977dd4d7-cf7a-4992-84e7-2be112591819","originalAuthorName":"王浩"},{"authorName":"侯朝霞","id":"a6b7dcb1-e15f-439f-9f74-0f809e32efde","originalAuthorName":"侯朝霞"},{"authorName":"胡小丹","id":"641cb149-e5ab-4ee1-8dbd-266eb68730d0","originalAuthorName":"胡小丹"}],"doi":"","fpage":"108","id":"829079dd-76c5-4024-8f05-1df363790a28","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ebdac967-ddc3-4a81-b073-65b73adefdc4","keyword":"堇青石","originalKeyword":"堇青石"},{"id":"f0d5418a-c9d0-47e1-afdc-84151c3b57c1","keyword":"溶胶-凝胶法","originalKeyword":"溶胶-凝胶法"},{"id":"a2a6e1aa-864e-4e3c-9ca4-724cc230d4fb","keyword":"添加剂","originalKeyword":"添加剂"},{"id":"20d02ab6-abc1-4286-89dd-6e2b9075b987","keyword":"煅烧温度","originalKeyword":"煅烧温度"}],"language":"zh","publisherId":"cldb201010030","title":"B2O3和煅烧温度对堇青石陶瓷材料的影响","volume":"24","year":"2010"},{"abstractinfo":"制备了TeO2-AlF3 (Al2O3 )-LaF3-ZnF2体系氟氧化物玻璃.通过DSC和红外吸收光谱分析研究了Al2O3替代AlF3对氟氧化物碲酸盐玻璃热稳定性和网络结构的影响.结果表明:Al2O3替代AlF3使氟碲酸盐玻璃的玻璃转变温度和热稳定性明显提高,玻璃中形成的[AlO6]八面体使玻璃网络结构更加紧密.","authors":[{"authorName":"侯朝霞","id":"cc7545d8-db63-4967-917d-c7cdbaf0467b","originalAuthorName":"侯朝霞"},{"authorName":"薛召露","id":"2a279944-d58e-4d18-91c8-06c41411b1d9","originalAuthorName":"薛召露"},{"authorName":"王少洪","id":"5c5f20fa-8a68-4046-9833-39cccea9a536","originalAuthorName":"王少洪"},{"authorName":"胡小丹","id":"ee5fd184-df75-4046-b186-5f4160429bcf","originalAuthorName":"胡小丹"},{"authorName":"陆浩然","id":"f74c0e3a-eeaf-42c1-ac1a-e14f49c2290e","originalAuthorName":"陆浩然"},{"authorName":"牛厂磊","id":"e9b332bf-efda-495d-9700-ddab5edab7a1","originalAuthorName":"牛厂磊"},{"authorName":"王浩","id":"1c864967-bc35-4262-9920-4d157837743c","originalAuthorName":"王浩"}],"doi":"10.3969/j.issn.1001-4381.2010.z2.055","fpage":"193","id":"0966628b-97ad-463a-b2d0-cd177695bb97","issue":"z2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"6a834e73-a44f-475f-aad8-5e04a0a543b2","keyword":"氟碲酸盐玻璃","originalKeyword":"氟碲酸盐玻璃"},{"id":"b1dfe8c4-69eb-427d-97e8-0767cf793c7a","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"4f9c4985-8800-4d70-9dc7-910b485f087a","keyword":"玻璃网络结构","originalKeyword":"玻璃网络结构"}],"language":"zh","publisherId":"clgc2010z2055","title":"TeO2-AlF3(Al2O3)-LaF3-ZnF2玻璃的热稳定性和网络结构研究","volume":"","year":"2010"},{"abstractinfo":"碲酸盐玻璃是一种具有较低声子能量和高折射率的新型光学材料,在蓝绿色激光器和光纤放大器等领域有潜在的应用前景.简要介绍近几年碲酸盐玻璃在组成、微观结构、制备方法及上转换发光性能等方面的研究现状,并对其发展前景进行展望.","authors":[{"authorName":"薛召露","id":"765cb461-8df1-4bb4-b0fc-3ab6e38f7fc8","originalAuthorName":"薛召露"},{"authorName":"侯朝霞","id":"cdc27636-de45-452a-b1f6-c1aa419a5de4","originalAuthorName":"侯朝霞"},{"authorName":"王少洪","id":"d4f08d80-f33e-4649-8873-d18aaccde653","originalAuthorName":"王少洪"},{"authorName":"胡小丹","id":"1668aa55-74c4-4f21-bd1c-668025d72a3a","originalAuthorName":"胡小丹"},{"authorName":"陆浩然","id":"4de26e97-fdbb-46a4-9959-1bca608943af","originalAuthorName":"陆浩然"},{"authorName":"牛厂磊","id":"3e2c3c3c-8414-43a4-80e8-79585f52102b","originalAuthorName":"牛厂磊"},{"authorName":"王浩","id":"8599db62-a3cb-4913-a91e-43670a9fb833","originalAuthorName":"王浩"}],"doi":"10.3969/j.issn.1004-244X.2010.06.028","fpage":"92","id":"a2922229-31e4-4b65-ab0d-442fde1d3491","issue":"6","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"d23c4278-a98b-4058-bcb9-53aceeee1f4e","keyword":"碲酸盐玻璃","originalKeyword":"碲酸盐玻璃"},{"id":"7f930fd1-6034-420b-9735-8afd878a36d6","keyword":"上转换","originalKeyword":"上转换"},{"id":"9a1e6f6e-7193-4d33-9200-f2e7bd4d9c87","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"bqclkxygc201006028","title":"上转换碲酸盐玻璃的研究进展","volume":"33","year":"2010"},{"abstractinfo":"研究了防结露涂料的制备方法,并按国家有关标准对涂料的性能进行了测试.通过极差分析找出最佳配方及工艺.讨论了各因素对涂料性能的影响.","authors":[{"authorName":"闫辉","id":"80d9d69e-9323-4d3e-a937-f308668fa1f0","originalAuthorName":"闫辉"},{"authorName":"王久芬","id":"50be88b5-3db3-4c25-8b01-a5ee04b71960","originalAuthorName":"王久芬"},{"authorName":"张丽华","id":"22b48dd5-5ff8-4bfd-9a09-1d3f856beb6e","originalAuthorName":"张丽华"},{"authorName":"张秀梅","id":"add46e87-f66f-416d-a84e-b34c778eed8f","originalAuthorName":"张秀梅"}],"doi":"10.3969/j.issn.0253-4312.2001.12.002","fpage":"4","id":"3b958603-c7f7-4d53-97c4-9d523a86d469","issue":"12","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"759e0fb9-1871-41e8-bd72-8d0bb8bee903","keyword":"防结露涂料","originalKeyword":"防结露涂料"},{"id":"10bdc805-34ea-4d51-9d86-1eed9e55bfe1","keyword":"防结露性","originalKeyword":"防结露性"},{"id":"63e2511c-173d-4c28-ab6d-a0bf428e01dc","keyword":"高吸水性树脂乳液","originalKeyword":"高吸水性树脂乳液"}],"language":"zh","publisherId":"tlgy200112002","title":"防结露涂料的研制","volume":"31","year":"2001"}],"totalpage":9,"totalrecord":85}